
 1

 2

CP2793

CAN Bus
Training

Course Notes

 3

Introduction 7
1 Demonstrations, Worked Examples and Exercises 8

1.1 Demonstrations 8
1.2 Worked examples 8
1.3 Exercises 8
1.4 Further work 8

2 Basic CAN Networking 9
2.1 Overview 9
2.2 What is CAN? 9
2.3 Nodes and Networks 9
2.4 The physical layer 10
2.5 Messages 10
2.6 Higher Level Protocols 11

3 CAN training solution 12
3.1 The CAN board 13
3.2 Setting up the CAN system 14
3.3 Testing your programs 15
3.4 Setting up the Kvaser CANLeaf analyzer 15

4 The Matrix CAN implementation 17
4.1 The physical layer 17
4.2 The Flowcode CAN component 17
4.3 Target microcontroller devices 18
4.4 CAN component settings 19
4.5 Flowcode Configuration settings 19
4.6 PIC development board/E-blocks settings 19
4.7 CAN Initialise macro 19

5Basic CAN signals 20

5.1Implementing basic CAN signals in Flowcode 20
5.2Using basic CAN signals 21

6CAN Demonstrations 22
6.1DM01 – Start-up scan 23
6.2DM02 – CAN monitor 25
6.3DM03 – Sensor Diagnostic program 27

7Worked Example 1: Brake!!!! 29
7.1Objective 29
7.2Part 1: The basic programs 29
7.3Part 2: A second receive node 31

file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165886#_Toc390165886
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165887#_Toc390165887
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165888#_Toc390165888
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165889#_Toc390165889
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165890#_Toc390165890
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165891#_Toc390165891
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165892#_Toc390165892
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165893#_Toc390165893
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165894#_Toc390165894
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165895#_Toc390165895
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165896#_Toc390165896
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165897#_Toc390165897
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165898#_Toc390165898
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165899#_Toc390165899
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165900#_Toc390165900
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165901#_Toc390165901
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165902#_Toc390165902
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165903#_Toc390165903
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165904#_Toc390165904
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165905#_Toc390165905
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165906#_Toc390165906
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165907#_Toc390165907
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165908#_Toc390165908
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165909#_Toc390165909
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165910#_Toc390165910
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165911#_Toc390165911
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165912#_Toc390165912
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165913#_Toc390165913
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165914#_Toc390165914
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165915#_Toc390165915
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165916#_Toc390165916
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165917#_Toc390165917
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165918#_Toc390165918
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165919#_Toc390165919
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165920#_Toc390165920
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165921#_Toc390165921
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165922#_Toc390165922

 4

7.4Conclusions 31
7.5Further work 31

8Demonstration 1: Brake!!! 32
8.1Setup 32
8.2Viewing the messages 32
8.3Part 1 – The brake light 32
8.4Part 2 – The dashboard display 32
8.5Conclusions 32
8.6Further work 33

9Fault finding in CAN systems 34
9.1Setup 34
9.2Viewing the messages 35
9.3Part 1 – F1 35
9.4Part 2 – F2, F3, F5, F6, F7 35
9.5Partial open circuits35

10Intermediate CAN Networking36
11The CAN component36

11.1General Settings36
11.2Transmit Buffers37
11.3Receive Buffers38

12Working with Message ID’s39

12.1Checking Message ID’s39
12.2Manual Message ID’s – a recommendation40

13Exercise 2: Rear Light cluster41
13.1Part A: Sending41
13.2Part B: Receiving41
13.3Further work41

14Notes for Exercise 242
14.1Part A: Sending42
14.2Part B: Receiving42
14.3Indicators44
14.4Conclusion44
14.5MAJOR ERROR!!! – Is the Brake on?44
14.6Further work44

file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165923#_Toc390165923
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165924#_Toc390165924
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165925#_Toc390165925
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165926#_Toc390165926
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165927#_Toc390165927
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165928#_Toc390165928
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165929#_Toc390165929
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165930#_Toc390165930
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165931#_Toc390165931
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165932#_Toc390165932
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165933#_Toc390165933
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165934#_Toc390165934
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165935#_Toc390165935
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165936#_Toc390165936
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165937#_Toc390165937
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165938#_Toc390165938
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165939#_Toc390165939
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165940#_Toc390165940
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165941#_Toc390165941
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165942#_Toc390165942
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165943#_Toc390165943
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165944#_Toc390165944
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165945#_Toc390165945
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165946#_Toc390165946
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165947#_Toc390165947
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165948#_Toc390165948
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165949#_Toc390165949
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165950#_Toc390165950
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165951#_Toc390165951
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165952#_Toc390165952
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165953#_Toc390165953
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165954#_Toc390165954
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165955#_Toc390165955
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165956#_Toc390165956

 5

14Notes for Exercise 242
14.1Part A: Sending42
14.2Part B: Receiving42
14.3Indicators44
14.4Conclusion44
14.5MAJOR ERROR!!! – Is the Brake on?44
14.6Further work44

15Demonstration 2: Rear light cluster45
15.1Setup45
15.2Viewing the messages45
15.3The light cluster45
15.4The messages45
15.5Other network traffic45
15.6Conclusions46

16Notes for Demonstration 246
17Changing Message ID’s47
18Exercise 3: Rear light system49

18.1Part A: Sending49
18.2Part B: Receiving49
18.3Further work50

19Notes for Exercise 351
19.1The programs51
19.2Conclusion51

20Demonstration 3: Rear light cluster52
20.1Setup52
20.2Viewing the messages52
20.3The light cluster52
20.4The messages52
20.5Conclusions53

21Notes for Demonstration 353

22Message Data54
22.1Default Data properties54
22.2Changing Message Data54
22.3Keeping track of data54
22.4Sending data54
22.5Receiving Message Data55

file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165950#_Toc390165950
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165951#_Toc390165951
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165952#_Toc390165952
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165953#_Toc390165953
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165954#_Toc390165954
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165955#_Toc390165955
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165956#_Toc390165956
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165957#_Toc390165957
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165958#_Toc390165958
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165959#_Toc390165959
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165960#_Toc390165960
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165961#_Toc390165961
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165962#_Toc390165962
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165963#_Toc390165963
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165964#_Toc390165964
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165965#_Toc390165965
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165966#_Toc390165966
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165967#_Toc390165967
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165968#_Toc390165968
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165969#_Toc390165969
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165970#_Toc390165970
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165971#_Toc390165971
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165972#_Toc390165972
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165973#_Toc390165973
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165974#_Toc390165974
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165975#_Toc390165975
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165976#_Toc390165976
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165977#_Toc390165977
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165978#_Toc390165978
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165979#_Toc390165979
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165980#_Toc390165980
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165981#_Toc390165981
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165982#_Toc390165982
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165983#_Toc390165983
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165984#_Toc390165984
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165985#_Toc390165985

 6

22.6Data order considerations55
23Example 4: Fuel gauge and warning light57

23.1Part A: Sending57
23.2Part B: Receiving57
23.3Further work57

24Notes for Exercise 458
25Demonstration 4: Fuel gauge and warning light60

25.1Setup60
25.2Viewing the messages60
25.3The fuel level60
25.4The warning light60
25.5Viewing the data60
25.6Conclusions60

26Advanced CAN Networking61
26.1Exercises61
26.2Masks and filters61
26.3How to work out which messages will be trapped by a par-
ticular mask/filter combination62
26.4CNF settings63
26.5Message details64
26.6Error detection64
26.7Wiring and other practical issues65

27Reference data66
27.1CAN standards66
27.2Higher level protocols66
27.3Acronyms and abbreviations67

file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165986#_Toc390165986
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165987#_Toc390165987
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165988#_Toc390165988
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165989#_Toc390165989
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165990#_Toc390165990
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165991#_Toc390165991
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165992#_Toc390165992
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165993#_Toc390165993
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165994#_Toc390165994
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165995#_Toc390165995
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165996#_Toc390165996
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165997#_Toc390165997
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165998#_Toc390165998
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390165999#_Toc390165999
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390166000#_Toc390166000
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390166001#_Toc390166001
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390166002#_Toc390166002
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390166002#_Toc390166002
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390166003#_Toc390166003
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390166004#_Toc390166004
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390166005#_Toc390166005
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390166006#_Toc390166006
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390166007#_Toc390166007
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390166008#_Toc390166008
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390166009#_Toc390166009
file://///matrixnas/Media%20and%20Graphics/Lottie/Curriculum%20Edits/CP2793-02%20CAN%20Bus%20-%20copy.docx#_Toc390166010#_Toc390166010

 7

These notes are designed to introduce you to the concepts required to understand
CAN networks and also to provide practical exercises with which to develop your
skills as well as those of your students.

The course is structured into a number of sections that first take you through the
basics of CAN and then into intermediate topics, such as messages and sending
data. The course also deals with some more advanced topics, including the use of
masks and filters. Examples and suggested work is provided as a basis for
developing demonstrations and practical activities for your students.

These notes provide a framework for teaching CAN to students. How you use them
for teaching is up to you. If you are teaching automotive students who do not need
to know how to program you can simply make use of the downloadable example
programs.

This course is carried out using Flowcode, a graphical programming language. The
Flowcode CAN component is designed to allow students to learn about CAN
without getting bogged down with the problems of programming in C or a lower
level language.

When teaching automotive students about CAN we do not envisage a great deal of
programming will take place in Flowcode. However we suggest that the supervisor
should have some Flowcode experience for debugging purposes. This can be
quickly and easily acquired.

More advanced students will want to use Flowcode extensively. There are a
number of tutorial files and resources on the Matrix TSL Flowcode web site that
students can go through to help them understand how Flowcode works. Students
will find that they can make rapid progress using Flowcode’s graphical interface.

This course is designed for use with two levels of student:

Firstly for use with automotive technicians at Level 3 to gain an appreciation of
CAN technology and the equipment used in fault finding CAN systems, and how
that fault finding takes place. These technicians are expected to download and
review programs made in flow charts, but are not expected to carry out any
programming tasks.

2. Secondly for more advanced students at Level 4 to gain an understanding of
CAN technology and to allow them to construct networks which communicate in
CAN and higher level protocols. These students are expected to develop their own
CAN networks using flowcharts with CAN macros provided. The extensive use of
flow charts will allow students to quickly and easily understand CAN protocols and
communication, avoiding the need to become involved with the processes of lower
level CAN bus software construction.

Introduction

 8

There are three kinds of exercises found in the notes; demonstrations, worked examples and
examples. We will briefly describe what we mean by each of these.

In the case of E-blocks2 based solutions, all the programs supplied on the CAN Solution CD
require Flowcode V8 or higher to be installed on the host PC.

1.1 Demonstrations

Demonstrations are provided that can be used with technicians to see a CAN system in action.
All programs will be provided so that they can be programmed into the nodes. No programming is
required, but the Flowcode flowcharts are available to students to show how they work. The
demonstrations are best used in conjunction with CANKing to allow students to see the
messaging in action, and to note the effect different programs have on the network traffic.

Demonstrations can be used to teach the fundamentals of CAN to students who are not required
to understand and check CAN systems but will not need programming skills.

1.2 Worked examples

A worked example is provided for the first basic example to allow students to be eased into both
CAN and Flowcode. The emphasis here is on getting students ‘up and running’ with a simple
CAN system in Flowcode that can then be used as a base of experience for later examples.

1.3 Exercises

Further exercises are provided, along with a set of accompanying notes. The notes give
information on setting up various aspects of the solution and can form the basis for handouts.

1.4 Further work

Questions to ponder and suggestions for further work are given with each exercise. This further
work can be used as the basis of differentiated student activities, thus meeting awarding body
requirements in situations where the CAN solution is being used in conjunction with a formally
assessed course.

1 Demonstrations, Worked Examples and Exercises

 9

2.1 Overview

This section is designed to get you up and running with a CAN Network as fast as possible. You will be
introduced to messaging and how to send receive a simple signal that can be acted upon. The sample
applications will introduce you to several basic CAN features, and will serve as a starting point for further
study.

2.2 What is CAN?

CAN – Controller Area Network is a serial network protocol. By which we mean it is a pre-defined way to
communicate between different parts of a system. Each part needs to speak the same language, and use
a common set of signals and message structures in order to be able to understand the messages and in
turn to be understood. CAN is one such system.

Other systems, such as RS-232 are often point to point systems where one device will talk directly to an-
other. A limitation of this system is that you may need to run several different connections to speak to dif-
ferent parts of the system, or one part may need to talk to another but may only be able to do so via an
intermediary.

CAN offers a simple solution to this problem. It sends the message to all parts of the system, and lets
each part (or node) decide for itself if the message is for it or not. Built in error checking and responses to
messages help prevent lost messages, or jammed systems where the system hangs whilst waiting for a
response to come in. Also messages can be responded to by multiple devices or even none at all, making
it easier to construct a system that only reacts wherever and whenever it needs to.

CAN has various inbuilt systems for error detection, and ways to prevent all the nodes trying to talk at the
same time. But you never see this, it’s handled by the CAN chip behind the scenes. All you need to do is
decide what messages to send and receive.

Another benefit of the CAN system is that if you wish to add another part to the system it can often be as
simple as programming it to respond to the appropriate messages and wiring it into the network. You don’t
need to connect it up in any specific place or sequence so you can slot the new node in wherever you
want, or wherever the physical system design requires it to be.

CAN was originally designed by Bosch for the Automotive industry, evolving from a need to communicate
between the various ECU’s (Electronic Control Units) on luxury cars. Since then CAN has grown to be-
come a popular network system, particularly in embedded systems. CAN is used on vehicles such as
cars, boats, planes, trucks, and in many other areas of industry. CAN’s high speed and robust nature
make it particularly suited for industrial or high speed applications.

2.3 Nodes and Networks

CAN systems comprise of two or more nodes connected in a network as shown in Fig. 2.1.

The network is the data highway to which the nodes are connected. Unlike many other systems where the
connections run from device to device the CAN network is free standing. Each node feeds off the network,
but does not block it, or prevent the other nodes from receiving the message.

The nodes can send messages onto the network, and can listen to the network to see if there are any
messages on it. The node can then check the message to see if it should respond to the message, or if it
should ignore it.

2 Basic CAN Networking

 10

Figure 2.1 Typical automotive CAN bus arrangement

Nodes are independent of each other, and can be as simple or as complex as the system designer wishes
them to be. A node could be a single light, or a whole dashboard. By virtue of the nodes being independ-
ent they can be added, removed or modified without needing to change any other part of the CAN net-
work.

For instance two models of a car may have different dashboards, one a deluxe model with extra features
not found on the basic model. The dashboards are both sent the exact same messages by the CAN net-
work; it is what messages they accept, and what they do with them that makes them different. The CAN
network does not care if a signal becomes a single light, or a strip of LED’s. It does not even care if the
‘Fancy RPM display’ message is ignored when the basic dashboard is fitted. The CAN network simple
puts the messages onto the network, and leaves the nodes to decide whether to use them or not. As there
is no change to the messages sent, the CAN network does not need changing to accept the different
dashboards so either dashboard can be slotted into the network.

2.4 The physical layer

The CAN specification does not specify the physical signal transportation layer, only the message format.
By doing this CAN allows system designers to implement a physical layer appropriate to the system rather
than having to adapt the system to match a preset physical layer.

This is a very important issue as it means that the way CAN is implemented in the physical layer can and
often will differ from system to system. The physical layer for a plant wide heavy industry CAN system is
likely to differ in many ways from one built into a luxury car. A CAN system such as the Matrix CAN board
is essentially our implementation of CAN using our own Flowcode component and our own CAN board to
drive the physical layer. Some parts of the overall system, such as the format of the message sent are an
integral part of CAN as defined by the CAN specification. Others such as the RX and TX buffers
(discussed later) are part of our implementation of a physical layer for CAN.

2.5 Messages

Messages are the beating heart of the CAN system. Without them it’s just a load of redundant wires and
circuit boards. Each message consists of an identifier (the Message ID that will become important later on)
and a stream of data. Actually, there’s more – acknowledgment bits, checksums, transmission details etc.
but these are dealt with automatically by the CAN component. All you need to worry about is the ID and
the data.

Basic CAN Networking

 11

The Message ID’s are used to help differentiate messages. A node could accept certain
messages, and skip others depending on their ID values. This allows complex interrelated
systems to be designed easily where multiple nodes can respond to the same message as easily
as a single node can pick out a message that only it will respond to.

Messages can contain data or be completely empty. For many simple signals such as a brake
light the act of sending a message may well be enough – a signal is sent and is reacted to. For
others e.g. RPM, or temperature readings, data of some sort is required and can be passed along
with the message. If data is sent it does not even need to be looked at. An aircraft RPM sensor
reading could be used by one node to display the actual RPM, but on another node to simply
activate an ‘engine running’ warning light without even looking at the data.

2.6 Higher Level Protocols

CAN is a message system. It is not responsible for the contents of the message. CAN does not
care if data is expected, or if the incorrect amount of data is sent. It is not responsible for ensuring
that the message is being sent to the appropriate node in the system, only that it is correctly sent
to a node. CAN only cares that it is a correctly formed CAN message.

However, we do care about the data. We care about which node it gets sent to. We care about
these things enough to create higher level protocols to deal with these kinds of issues. These
protocols sit on top of CAN and help control the flow of messages and data on the network.
Higher Level Protocols, or HLPs, are used in CAN systems to perform functions such as system
startup procedures, error checking, connection and status monitoring and other administrative
tasks.

Using an HLP may involve a CAN node having to send messages asking to be able to speak to
another node, and requiring messages to be sent back agreeing to the communication before the
real communication can begin. Such systems may seem like a major overhead when you are
learning to send CAN messages, but once you understand CAN messages then your mind will
automatically start to look for ways to error check and monitor the system. HLPs are the result of
this natural progression.

HLPs are the glue that helps keep the system ticking over nicely. For this reason large scale
systems will most likely use a HLP. One problem with HLPs is the amount of them – over forty
already. Which HLP you use would most likely depend on the company you work for, or the
products you deal with.

HLPs are beyond the scope of this course. The diversity makes it difficult to deal with them in
detail. And the size and complexity of code needed for a HLP is too much for most basic
microcontroller systems to handle. However, if you wish to look into HLPs and how they are used
you can find documentation on various CAN HLPs, such as CANOpen, on the Kvaser site
www.kvaser.com.

Basic CAN Networking

http://www.kvaser.com/

 12

This course is based around a CAN training solution that is set up as a four node network. This
provides a digital input node (switches), a digital output node (lights) and an analogue input node
(sensors) together with a monitoring/control node (the dashboard). These four nodes should help
you gain an understanding of CAN network tasks within, but not limited to, an automotive context.
Not all nodes are required for every task, and for some tasks you may need to reconfigure some
of the nodes. However for general training, and to teach the principles the four node network is
ideal. A fifth connection point is available, which is used in conjunction with the Kvaser CAN
Analyzer to monitor network traffic.

Figure 3.1 The CAN training solution

The CAN training solution consists of backplane panels with a node on each panel. The power for the
panels can be derived from a single PSU attached to one of the programmer boards and then the VPWR
and GND signals looped together as shown above. Only one USB cable is needed as each node requires
programming separately. The USB cable can be connected to any of the nodes for programming.
However, a second USB port on the PC is needed for the CAN Analyzer.

Important note: Information presented here is correct at the time this document was produced. Please
check the Matrix web site www.matrixtsl.com for the latest E-blocks2 documentation.

3 CAN training solution

http://www.matrixtsl.com/

 13

3.1 The CAN board

Figure 3.2 The E-blocks2 BL0140 CAN board

A multiway connector is used here to connect the CAN controller to the upstream
microcontroller. The Transceiver switch should be set to EXT and the Termination switch set to
ON for Nodes 1 and 4, and OFF for Nodes 2 and 3. The double screw terminal socket is used
to connect the node to the CAN network.

Two features that are specific to this board, and may not be available on other systems, are the
two LED’s and the three switches. The LED’s can be configured as general outputs or as buffer
state indicators. The switches can be configured as general inputs or as CAN buffer activation
switches.
This is dealt with later on in the course.

3.1.1 CAN faults board

The CAN faults board fulfils three
functions: firstly it acts as a point where
the Kvaser analyser can be attached to
the CAN bus using the D-type connector
on the CAN faults board, secondly it
allows you to insert a number of faults
onto the CAN bus, and thirdly it allows
oscilloscope probes to be easily attached
to the CAN high and CAN low lines using
test pins TP 1 to TP4. The switches
marked F1 to F8 allow each of the CAN
lines to be placed in four separate fault
conditions: short circuit to 5V, short circuit to ground, open circuit and partial open circuit. The
potentiometers RV1 and RV2 allow you to vary the partial open circuit resistance. The circuit of
the CAN faults board is available in the technical datasheet of the CAN faults board.

3.1.2 Installation

1. Install Flowcode
2. Check for any updates to Flowcode using the Help menu item “Check for updates”
3. The CANLeaf analyzer supplied as part of the CAN solution requires a USB Driver to be
installed for it to function correctly. See the Kvaser folder on the accompanying CD for
instructions and driver files. IMPORTANT – Do not plug the USB CANLeaf analyzer in until
asked to do so by the Install routine.
4. The Kvaser analyzer requires the CANKing software to be installed. A copy of this is on the
CD supplied with the CAN training solution. IMPORTANT – CANKing needs to be installed
before the Kvaser analyzer or the CAN Analyzer may not be recognized correctly.

 CAN training solution

 14

3.2 Setting up the CAN system

The basic CAN node we use here consists of either a PIC or Arduino based processor, with an
BL0140 CAN board attached.

3.2.1 Setting up the CAN nodes

The CAN solution consists of 4 nodes, plus an attachment node for the Kvaser CAN analyzer:

Node 1) Monitoring and Display control node
Node 2) Input switch node
Node 3) Output display node
Node 4) Analogue Sensor node.

Fitted with sensors: Light (socket 0,1), Rotary (socket 2,3) and Temperature (socket 4,5)

Figure 3.3 CAN system – wiring of the power connections

3.2.2 E-Blocks2 board configurations

3.2.3 Testing the CAN system

Set up the CAN system with the panels powered up, and the Kvaser analyzer attached and
connected to the PC. As supplied the CANH (CAN High) line has a blue wire, and the CANL
(CAN Low) line has a yellow wire (however it’s always best to check just to be on the safe side).
Nodes 1 and 4 are End Nodes. Ensure that the Termination switch is set to ON. For Nodes 2
and 3 the Termination switch is set to OFF.

 PIC BL0011 Arduino BL0055

Port A Port B Port C A0-5 D0-7 D8-13

Node 1 BL0169 BL0140 BL0169 BL0140

Node 2 BL0145 BL0140 BL0145 BL0140

Node 3 BL0167 BL0140 BL0167 BL0140

Node 4 BL0129 BL0140 BL0129 BL0140

 CAN training solution

 15

The test programs are available in Flowcode format and can be compiled and downloaded to
the appropriate CAN nodes

• Node 1 – LCD display and low fuel warning

• Node 2 – brake pedal switch

• Node 3 – brake light
Node 4 – fuel sensor board

Once the four nodes have been programmed you can test Node 1 and Node 4 by moving the
sensor rotary and watching for a corresponding change on the Node 1 display. Nodes 2 and 3
can be checked by pressing push switch 0 on Node 2 and watching for a signal on LED 0 on
Node 3.

3.3 Testing your programs

Because CAN requires two nodes to be useful, and hence two separate programs running at
the same time, we can’t simulate them in Flowcode. To get around this problem we need to use
some kind of analyzer that plugs into the CAN network and monitors the messages sent.
In order for you to be able to monitor and test your programs we have included the Kvaser
CANLeaf analyzer in our Solutions packs. The Kvaser CAN analyzer can be plugged into our
CAN network at the Analyzer node and connects to a PC via USB to allow you to monitor the
network.

When testing your CAN system make sure that the switches on the EB048 CAN faults board
are in the Normal position.

3.4 Setting up the Kvaser CANLeaf analyzer

The Kvaser CAN analyzer comes with set up instructions, documentation and software on the
accompanying Kvaser CD. Please refer to the provided documentation for detail on installing
and setting up the software.

3.4.1 Using the Kvaser CANLeaf analyzer

Connect the CANLeaf analyzer to the Kvaser analyzer node with the channel 1 D type
connector.
Connect the analyzer to the PC with the USB cable connector.
The CAN analyzer program is called CANKing and should be in your Programs menu. Open
CANKing.

The main two parts we are interested in right now are the Start and Pause buttons and the
Message screen. The Start and pause buttons do as they say, they allow you to start pause
and restart the analysis.

The Output Window displays all the messages on the CAN network.

The Message Id, data length, data items, time sent and other bits of information are noted. This
can help you track down problems in your code due to missing data, wrong ID’s etc., or to
check that a node is actually getting the right information sent to it if it is not responding
correctly. You can also insert custom messages onto the network for testing and debugging.
The analyzer makes life much easier and should be used as a matter of course when
programming.

 CAN training solution

 16

Figure 3.4 The CANKing output window

3.4.2 Analyzer network settings

In order to get the Analyzer working correctly on the network we need to set up the bus param-
eters. If you use the suggested setting for the CAN component these should match up already.
If however you need to change them for any reason they are on the Bus Parameters tab of the
CAN controller window.

Figure 3.5 CAN controller set-up dialogue

Statistical details and current Bus status are contained on the Bus Statistics page; along with
the On/Off Bus connection buttons (see Fig. 3.5). The standard settings used by CANKing work
with the suggested settings option for the Matrix CAN board are:

CAN Channel: Select the USB CANLeaf options
Exclusive: On
Bus speed: 125 kbps
Sampling Point: 62.5%
SJW: 1
Driver mode: Normal

 CAN training solution

 17

4 The Matrix CAN implementation

CAN component icon

4.1 The physical layer

The physical layer used in the Matrix CAN system comes in the form of a twisted wire pair, end-
ing in termination resistors. The resistors are added to the ends to help prevent signal loss or
interference. The CAN board has a CANH (CAN High Line) and a CANL (CAN Low line) termi-
nal socket which is used to connect the node to the network. As supplied a blue wire is used for
CAN High, and a Yellow wire is used for CAN Low. This wire color code is not obligatory, you
can use your own color code if you already one set up, but you must wire CANH to CANH and
CANL to CANL when wiring up connections.

Termination resistors are set by means of a Jumper – J. Move the jumper to the END NODE
box position to set the termination resistor for the nodes at the ends of the network.

The board uses both a CAN Controller (MCP2515) and a CAN Transceiver (MCP2551). The
CAN controller uses the SPI™ bus to configure the CAN controller for transmitting and receiv-
ing CAN information. Information sent and received is stored is a series of buffers. Three trans-
mit buffers and two receive buffers are used to store the data. Note that these buffers are part
of our implementation of a physical layer for CAN and are not a part of the CAN specification
itself.

4.2 The Flowcode CAN component

The Flowcode CAN component uses a series of properties and macros to provide CAN mes-
saging in Flowcode. The properties are used to set up defaults both general, such as baud rate
and sample point, and CAN message data, such as Message ID’s and default data. The mac-
ros allow the user to initialize the CAN system and to send and receive data. Macros allow the
user to edit the main parts of the CAN message, such as Message ID and data sent. Other
parts of the CAN message not related to data transmission, such as ACK bits and bit stuffing
are handled behind the scenes automatically.

The CAN component can be found in the Comms section of the Components Libraries Toolbar

 18

Details of the macros and properties of the Flowcode CAN component are contained in the
CAN component help file. The settings shown in Figs. 4.1 to 4.4 and listed in sections 4.3 to 4.5
are used for all projects in this course unless specifically stated in the instructions for that task.

CAN Component Properties
The CAN component properties can be found
on the ‘Properties Panel’ when the CAN compo-
nent is selected / highlighted.

Properties
The Properties section allows you to set the
CAN configuration settings.

Connections
The Connections section allows you to set the
SPI settings for the CAN. For the PIC is Port C,
for Arduino/AVR is Port B.

TX Buffer
The 3 TX Buffer sections allow you to set the
default details for the three transmit buffers (TX
Buffer 0 to TX Buffer 2) used in the CAN com-
ponent. Unless modified in the program by mac-
ros, these default settings will be the Message
ID values and data (D0 to D7) values sent

RX Buffer
The 2 RX Buffer sections allow you to set Masks
and Filters to process and select Message IDs
to be received (more on this later). As well as
the ability to configure the Settings of each buff-
er individually.

4.3 Target microcontroller devices

This course was written using PIC and AVR mi-
crocontroller device. If you wish to use other mi-
crocontroller devices you will need to adapt the
settings, programs and instructions to match the
new device.

The Matrix CAN implementation

 19

4.4 CAN component settings

The required settings are as follows:

Channel: External
Controller Osc: 20MHz
Bus rate: 125 (kbps)
Sample point: 60%
SJW: 1
ID Type: Standard Only

Channel: Channel 1
Chip Select: Port pin 2

Note: Ensure the Bus Rate is set to 125, as it is set to 500 by default.

4.5 Flowcode Configuration settings

PIC Target: BL0011
Arduino Target: BL0055

4.6 PIC development board/E-blocks2 settings

Voltage Selector: 5V

4.7 CAN Initialise macro

The CAN component needs to be initialized before you can use it in your program.
To initialize the CAN component place the CAN “Initialise” macro in your program before any other CAN macros
are used. Ideally it should be placed right at the start of the program.

The Matrix CAN implementation

 20

CAN is about both sending signals from nodes onto the network, and about receiving signals
from the network and acting upon those signals if they are meant for that node. The two tasks
are separate processes. A node can send a signal or it can receive a signal it does not need to
do both. However it can do both, which adds to the flexibility of CAN systems.

A basic CAN system requires a Node that can send signals and a Node that can receive sig-
nals. There can be more nodes, either sending or receiving signals, but a minimum of one
sending node and one receiving node are required for communication.

As mentioned earlier the CAN signals are sent and received using our implementation of the
Physical layer – CAN specifies the message leaving the lower physical layer for us to imple-
ment. In our system we have TX Transmit Buffers and RX Receive Buffers that are used to
store the data for sending, or for us to examine when it is received. Each Message is sent with
a Message ID value which can be checked for by other nodes and acted upon if it matches a
list of ID’s to be accepted.

5.1 Implementing basic CAN signals in Flowcode

5.1.1 Initializing the CAN component

Whatever function a node has – sending, receiving or a mixture of both, it requires the CAN component
to be initialized in order for the component to work.
Add an Initialise macro to your program, preferably at the start where it can be checked for quickly.
Basic CAN signals require two separate nodes to set up – a sending node and a receiving node.
5.1.2 Sending nodes
The CAN component’s default settings for the three TX transmit buffers are all set to 0. This means that
they need configuring in order to function. Once configured, the messages can be sent with the
SendBuffer macro. The Buffer parameter refers to the TX0-TX2 buffer to be sent, and hence can be set
from 0 to 2 respectively. Below is the TX Buffer properties which are used in the example files. For TX
Buffer 0, the Message ID is set to 688 and the Length is set to 2, which determines how many bytes of
data will be sent – 85, 170, 0, 0, 0. We will learn more about Message IDs and data later on. For now
just remember that this data will be sent with this Message ID when TX Buffer 0 is sent.

Figure 5.1 Sending node settings

5 Basic CAN signals

 21

5.1.3 Receiving nodes

The receiving node needs to be set up to accept incoming messages in order to function. By
default the RX Receive settings are set to reject all messages. To alter this to go to the RX
Buffer section on the ‘Properties Panel’ and set the RX Buffer 0 Buffer settings to ‘Use Mask
and Filter’, this accepts a set of specific messages. Note for the settings specified in the
example files set the Filter 0 property to ‘100’. When using the example settings, ensure that
you change the RX Buffer 1 settings to ‘Accept All’.

Figure 5.2 Receiving node settings

The node will now accept all transmissions on that particular buffer regardless of who sent
them.

You can check for arriving messages with the CheckRx macro. The buffer parameter selects
which receive buffer to check. In this case we need to check buffer 0 for RX Buffer 0. If a
message has arrived CheckRx will return a non-zero value. If we have a non-zero return value
the node can then respond to the message by performing whatever functions it has been
programmed to do.

5.2 Using basic CAN signals

A simple system can be set up using basic CAN signals. However the system is restricted to
only one activating signal, and only one response. More than one activating node can be
present that can send an activating signal but as the receiving node accepts all signals it does
not matter who sends the signal. In a similar way, any node set to receive all signals will react
to the message sent. It does not matter who sent the signal, or who to, only that a signal was
sent. This allows us to have more than one node respond to the same signal, but as they all
accept all messages the response will be the same for any signals sent.

This method of communicating is very basic. All signals are reacted to in the same way and
there is no way to prevent signals not intended for the receiving node being accepted as well,
thus generating false events. Although this system can work for a small single purpose network,
e.g. for a brake/brake light system, such a system would be unlikely to be used outside of a
learning environment. The CAN system as described here is simply not robust enough for
practical use. Some method must be used to make the nodes more selective of what messages
they send or receive. This will be covered in the next section, dealing with Message ID’s.

Basic CAN signals

 22

The following three demonstrations illustrate CAN in action, and some of the main uses of CAN.
These demos can be used to give students a basic understanding of CAN systems prior to the
CAN programming examples.

Also the demos can used to illustrate concepts such as message monitoring, start-up scans
and diagnostic tests for students who may be working with CAN systems, but are not required
to create or program CAN systems.

• DM01 (6.1) illustrates a start-up scan with basic system error checking. Checking that a
node is present on the system is the first step in examining the problem.

• DM02 (6.2) is a basic message monitoring example. Message monitoring is a standard
method of fault diagnosis. Monitoring the message traffic can help to identify which node or
nodes have faults in them.
DM03 (6.3) is a node specific monitoring and test program. This demo illustrates the use of
diagnostic tests to examine a particular node to diagnose the fault.

Figure 6.1 CAN System – System overview

CAN Node 1 – Main control panel
CAN Node 2 – Switch panel
CAN Node 3 – LED panel
CAN Node 4 – Sensor panel

Flowcode FCFX files are provided so that advanced users can see and work the code if
required.
For simple demonstrations the Nodes can be pre-programmed to allow students to examine the
nodes straight away.

Note:
For these Demos only the Message ID HI byte is used in order to simplify the mathematics
involved.
It is assumed that all Message ID LO bytes are identical as so can be safely ignored for these
demos.

6 CAN Demonstrations

 23

6.1 DM01 – Start-up scan

6.1.1 Aim

To demonstrate an initial start-up scan that checks the system components are all connected
and working, and how this can help in automotive diagnostics.

6.1.2 Resources:

This task uses 5 programs:
DM01_N1 – Node 1 program (Main control panel program)
DM01_N2 – Node 2 program (Brake switch)
DM01_N3 – Node 3 program (Brake lights)
DM01_N4 – Node 4 program (Fuel sensor)
DM01_NX – program for non-functioning node

Programs are supplied in FCFX file format so that users can view and modify the flowchart pro-
gram.

(Note: For the purposes of this exercise the programs only contain code for the start-up scan
procedure.)

6.1.3 Part 1: Running the scan

1. Load programs DM01_N1 – DM01_N4 into nodes 1-4 respectively.
2. Upon reset of the Node 1 control panel node the Scan program will commence.
3. The LCD will display “Starting scan”
4. Next Node N2 (Brake switches etc.) will be checked.
5. Once Node N2 has been detected “N2 – Brake Sw” and “Present” will be displayed.
6. Next Node N3 (Brake Lights) will be checked.
7. Next Node N3 (Fuel Sensor) will be checked.
8. Finally the LCD will display the overall scan result. In this case “All systems on” to show
that all systems responded correctly.

6.1.4 What is happening?

The scan works on a simple message/response system.

The whole system is broken up into 4 separate units, called Nodes, which function inde-
pendently. They are all however connected to the CAN bus, which allows them to listen for sig-
nals on the CAN bus and to send signals as well.

The Control panel node - N1 - sends a sequence of messages with a pre-set ID number, to the
other nodes in the system.

The messages are not sent to a specific node. They are simply put on the CAN bus for all the
nodes to listen for.

The other nodes on the system are listening for messages. They have been set up to look at
the ID of the message and only respond to one specific ID message. When a node spots a
message it can respond to it sends a message of its own i.e. it responds to the initial message.

The control node N1 node then waits for this response. If it does not get one in a set time it
records the node as not present and moves on to the next item to check. If node N1 receives a
message it then knows that that particular node is present on the system.

CAN Demonstrations

 24

6.1.5 Part 2: Picking up errors.

1. Send the program DM01_NX to one or more of nodes 2-4 (e.g. Node 2).
2. Press reset on Node N1 to rerun the scan.
3. Note what happens when the scan reaches the node(s) with DM01_NX in
them.
4. The program will pause for a bit whilst it is looking for the node. After a short
while it will assume the lack of a response means that the node is not connected
or not working and will report the node as “Not present”.
5. Once all nodes have been scanned for the LCD will display a “Warning” mes-
sage and then list the Nodes that it did not find e.g. “N2”.
6. Next, send the DM01_NX program to nodes N2-N4.
7. Press reset to run the scan again.
8. Once it is complete it will display an “Error” message and “No systems found”
to inform you of the problem.

6.1.6 What is happening?

The program DM01_NX effectively disables the node mimicking a non-functioning
ECU which does not respond to the ‘scan’ from Node N1.

6.1.7 Limitations

The start-up scan simply checks that a node is present: it does not prove that all
parts of the node circuit are working correctly. For example a fuel node with a bro-
ken sensor will be present, but not working. However just knowing that a node is
or isn’t present can help solve some problems in automotive networks.

Note that we have made separate programs here to illustrate how the start up
scan in a car can help check the functionality of the car before a journey starts. In
practice each sensor would have a routine like this incorporated into its main pro-
gram.

6.1.8 How does this help me?

If a system (node) is not attached or not working it can’t be used. A start-up scan
is useful for this basic level of diagnostics. Are all the systems present and ac-
counted for? Finding out that Node N2 is not responding to your scan means that
you can then start checking Node N2 for faults.
Whilst we have only four simple nodes here imagine a more complex system with
a hundred or more nodes. One simple start-up diagnostic program can save you
hours checking with a multi-meter.

CAN Demonstrations

 25

6.2.1 Aim

• To monitor the messages and data being sent on the CAN bus.
To display the Node and function, the Message ID and the Data.

6.2.2 Resources:

This task contains 5 programs:
DM02_N1 – Node 1 program (Main control panel program)
DM02_N2 – Node 2 program (Switches node)
DM02_N3 – Node 3 program (Lights node)
DM02_N4 – Node 4 program (sensor node)
DM02_NX – program for unknown messages

Programs are supplied in FCFX file format so that users can view and modify the code.

6.2.3 Part 1: Message monitoring

1. Load programs DM02_N1 – DM02_N4 into nodes 1-4 as appropriate.
2. Upon reset of the Node 1 control panel node the Monitoring program will commence.
3. When a message is received the ID is checked against a list of known ID’s and the Node
and function displayed on the top line of the LCD.
On the next line of the LCD the Message ID and the Data is displayed.

6.2.4 Signals sent

• The Fuel sensor on Node 4 automatically sends out fuel level signals every few seconds.

• The switches on Node 2 send messages when pressed: data value 255 when pressed and
data value 0 when released.
Node 3 lights up the LEDs when appropriate, but does not send out any signals.

6.2.5 What is happening?

The control panel listens for any message and displays the Message ID and data value on the
LCD display. The Message ID is also checked against a list of known Message ID’s to get the
Node and function information, which is also displayed. Messages which are not on the list of
known nodes and functions are listed as “NX – Unknown”.

Some messages are sent automatically, such as the Fuel level reading – this ECU has a
program inside it which sends the messages at regular intervals. Others are sent as the
response to an action – such as pressing or releasing the brake switch. Some nodes – e.g.
Node 3, may never actually send messages: it only listens for messages and processes them.
Note that this is an example of a fully functioning Node which does not create any messages on
the CAN bus.

Note that when a switch is pressed a CAN message is generated, and when the switch is
released a different message is generated. We could send a continuous signal until the switch
was released, but that would swamp the CAN bus with messages. If a signal was sent just for
pressing a switch we would never know when it was released. If the same data value was sent
we could get confused as to when it was turned on and when it was turned off. So we send
different data values to distinguish the ‘switch on’ and ‘switch off’ transitions. You could also
use different messages with different Message IDs instead. The important thing here is being to
be able to differentiate the different signal states.

6.2 DM02 – CAN monitor

 26

6.2.6 Part 2: Unknown messages.

1. Send the program DM02_NX to one of the nodes 2-4 (e.g. Node 2).
2. When a message is received from this node it does not match any of the known nodes and
functions.
3. In this case the node is reported as “NX – Unknown”
The Message ID and any data is shown on the second line of the LCD.

Unknown messages would be very rare in a new automotive system but can occur under
certain circumstances. For example where a vehicle has been damaged, a new ECU may be
fitted which has a later version of software than the original vehicle. This new CAN ECU may
have slightly different messages, or may generate new messages. Because of this automotive
technicians may be asked to download new software to some parts of the vehicle to cope with
engineering changes that have occurred as the design has changed.

6.2.7 Limitations

The Message IDs are checked against a list of known nodes and their functions contained in
Node N1. Each message only contains an ID and some data – a programmer has made some
kind of look up table in Node N1 that relates this to the function of the node the message is
from. A message does not tell us where it came from. It only contains the Message ID and the
data. If a message arrives with a Message ID that is in the list it will be reported as being that
node and function regardless of whether it is or not. This is a very important point to appreciate.
For example if you programmed a temperature sensor ECU with the program for a fuel sensor,
then it is possible that you could end up with a fuels sensor level indicator which is actually
governed by the engine block temperature!

Due to LCD display size constraints we can only display the first item of Data from the
message. However the CAN nodes can send up to eight items of data with each message.

6.2.8 How does this help me?

The CAN bus is a message system. It carries the messages produced by nodes along the
system for other nodes to listen in to and react to when needed. The CAN monitor program
allows us to see this information visually.

What these messages are and what data they carry is of prime importance to us. Wrong or
missing data and messages are prime indicators of problems. If the brake node is not sending
messages when pressed we know there is something wrong with the brake node. If it is sending
data but the brake light is not coming on, then we know it is a problem with the brake light node.
Just monitoring for brake messages can tell us where the problem lies: at the source of the
messages, or at the destination.

By monitoring the messages sent and the data values, and what causes signals and what
reacts we can start to diagnose problems, and narrow down what individual nodes need further
diagnostic tests. If a unit is upgraded or modified we can also monitor its messages and data to
ensure it is working correctly.

DM02 – CAN monitor

 27

6.3.1 Aim

• To monitor the messages and data being sent on the CAN bus.
• To display the Node and function, the Message ID and the Data.

6.3.2Resources:

Node 4 BL0129 to be fitted with sensors: Light (socket 1, pins 0,1), Rotary (socket 2, pins 2,3)
and Temperature (socket 3, pins 4,5)

Programs are supplied in both HEX file format for immediate use and FCFX file format so that
users can view and modify the code.

6.3.3 Part 1: Sensor monitoring

1. Load programs DM03_N1 to DM03_N4 into nodes 1-4 respectively.
2. Upon reset of the Node 1 control panel node the Start-up scan program will commence. This
is detailed in DM01
3. The Start-up scan is used to verify that the Sensor node is present.
4. Once the scan has been completed the program then monitors and displays the sensor
values. You should be able to see a change in the value displayed by altering the light level,
temperature, and also by altering the variable resistor on the sensor board which is used to
mimic fuel level.
5. Temperature, Fuel level and Light levels are monitored, with the sensor values displayed on
the LCD below the appropriate heading.
The data assumes an initial value of zero, and is updated every time a message arrives
bearing data from the sensor node on the status of the sensors.

6.3.4 What is happening?

The control panel listens for sensor node messages and records the data received from them.
The data in this case is a number between 0 and 255. In practice a separate program on the
instrument console would be used to convert this data into a meaningful quantity for human
beings; for example fuel remaining.

In this set of programs the data received is displayed to allow a technician to monitor the sensor
values. Various problems will cause distinct readings that can be used to predict what faults
have occurred.

6.3.5 Limitations

The sensor monitor program only shows the data values and does not provide diagnostic error
messages for all situations. Given the small system here it is not a problem, but more complex
systems may require better internal error checking procedures and diagnostic messages to be
incorporated. However as you will see in the next few exercises, the CAN system can greatly
assist in finding faults with nodes.

 PIC BL0011 Arduino BL0055

Port A Port B Port C A0-5 D0-7 D8-13

Node 1 BL0169 BL0145 BL0140 BL0169 BL0145 BL0140

Node 2 BL0145 BL0140 BL0145 BL0140

Node 3 BL0167 BL0140 BL0167 BL0140

Node 4 BL0129 BL0140 BL0129 BL0140

6.3 DM03 – Sensor Diagnostic program

 28

6.3.6 Part 2: Potential problems

The following set of Errors show various diagnostic tests in action.

6.3.7 Error 1: Node 4 has no power.

1. Set up the programs as in part 1
2. Unplug the power to the sensor node.
3. Run the diagnostic program
4. The start-up scan will report that N4, the Sensor node, was not present indicating a problem
with that unit.
The monitoring values will all be zero and will not change.

This is the first test – checking that the node is actually there. If this test indicates the sensor
node is not present then we know that the fault is affecting the whole node and the error is likely
to be failure of the main ECU, loss of power or ground.

6.3.8 Error 2: The sensors have no power.

1. Set up the programs as in part 1
2. Remove power from the sensor board (not the whole node, just the sensor board) by
unscrewing the power screw terminal and removing the red wire.
3. Run the diagnostic program
4. The start-up scan will report that N4, the Sensor node, is present.
5. The monitoring values will all be stuck at whatever default value they have and will not
change indicating that the sensors are not updating.
Stimulating the sensors produces no change in the reading.

Here the operation of the sensor node, N4, is fine. However there is a fault with part of the
sensor circuit that the sensor node cannot detect. We know the node is working because we
are getting readings: because none of the sensor readings change when we stimulate the
sensors, we know the fault must be with the sensor board as a whole.

6.3.9 Error 3: Breakdown mid journey

1. Set up the programs as in part 1
2. Run the diagnostic program
3. Monitor the sensor values to see that they change and update as the sensors are
stimulated.
4. Unplug the power to the sensor node.
5. No more messages will be sent meaning that the sensor data values will not get updated.
The readings will appear to jam. Stimulating the sensors will not change the sensor values.

Here we are simulating a breakdown, where the power loss is after start-up so we don’t get the
“Not present” warning that would show us the problem then. This could be the result where
there is an intermittent fault in the power line to a sensor ECU: the system checks out on start
up, but fails part way through the journey.

This is a tricky situation as ideally we would like to know when a system failed and is not
updating. There are a number of ways we could check for this.
We could for instance have a timeout after which the sensor readings go to “–“.
We could also re-run the start-up scan for the entire system every few minutes in the journey to
check all nodes are present.

6.3 DM03 – Sensor Diagnostic program

 29

For this first example we will just send a message and see if we can receive it on the other node,
reacting in some way to show that it has arrived.

7.1 Objective

Create a CAN network that turns on the brake light when the brake pedal is pressed. The brake pedal is
on switch 0 on Node 2, and the brake rear light is on LED 0 on Node 3.

7.2 Part 1: The basic programs

For this program we will use the default settings.

Note: You will need to configure the microcontroller development board for the correct microcontroller
device.

7.2.1 The Send signal

1. On the Flowchart add a ‘Call Macro’ icon and set it to Initialise. This is an important macro that is
needed for the CAN component to work. This macro is best added at or near the start for ease of
reference.
2. Add a loop so that the program will run continuously.

3. Add an input icon and get the value of switch D0, the brake pedal, into a variable called BRAKE.

4. Add a decision icon set to BRAKE > 0.

5. On the YES branch add a further macro. Open the macro Properties Panel and select the
SendBuffer macro. The macro takes one parameter – Buffer. We will discuss buffers in more detail later.
For now set Buffer to ‘0’.
6. Add a short delay (Delay icon set to 100ms) just before the end of the loop.
Save the program as CAN_Example_01_Send.fcfx.

Fig.7.1 shows the Flowcode implementation. The program is now ready to compile and download to a
CAN node. We now have a working CAN node. When we press switch D0 it will send a message on
Buffer 0.

7.2.2 The receive signal

We have a message – now we need a node that can react to it!

1. Start a second program, once again with the appropriate microcontroller.

2. Add a CAN Initialise macro and a loop.

3. Inside the loop add the macro ReadRx and set the parameter, Buffer, to ‘0’ to match that of the
message we sent in the first program.
4. Create a MESSAGE variable and use this for the Return value.

5. When a message gets sent to buffer 0 ReadRx will return a non-zero value.

6. So if we follow the Read Rx macro with a decision icon we can then react to the message.

7. Add the decision icon and set it to MESSAGE > 0.

8. On the YES loop add an output icon so that we can react to the message.

9. We will set this to turn on LED 0 – the brake light.

10. On the NO loop add an output icon to turn off D0, so that it is not on permanently.

11. Add a short delay (Delay icon set to 100 ms) just before the end of the loop.

12. Save the program as CAN_Example_01_Receive.fcfx.

 7 Worked Example 1: Brake!!!!

 30

Figure 7.1 Send signal flowchart

Figure 7.2 Receive signal flowchart

 7 Worked Example 1: Brake!!!!

 31

Having entered the flowcharts you are now ready to compile and download them.

1. Compile and download CAN_Example_01_Send.fcfx to the CAN node with the attached
switches.
2. Compile and download CAN_Example_01_Receive.fcfx to the CAN node with the attached
LED’s.
3. Press switch 0 and, if all went well, LED 0 should light.

7.2.3 Testing the programs

Pressing switch 0 on Node 2, the switches node, should now light up LED 0 on Node 3, the LED
node.

To view the network traffic

1. Connect the CANLeaf analyzer to analyzer node on the network.
2. Open CANKing and select the USB CANLeaf device.

7.3 Part 2: A second receive node

Send the receive program CAN_Example_01_Receive.fcfx to Node 1. Now when switch D0 is
pressed the same LED will light on both Node 1 and Node 3.

Next modify the program to light up LED 1 instead. Save the program as
CAN_Example_01_Receive_A.fcfx and send the program to Node 3. Now when switch 0 is
pressed different LED’s light up on Node 1 and Node 3.

7.4 Conclusions

This example demonstrates that sending and receiving are not only separate acts, but also that
they are totally independent. Depending on the programs sent to different receiving nodes each
node could respond to the signal in a completely different way.

7.5 Further work

• Consider what would happen if in Part 2 you loaded a program that would send a signal if

switch 1 was pressed. How would the other Nodes be affected? Modify the send program to
send the signal when a switch on Port A is pressed and send the program to Node 1 to see
what happens.

• If you use CANKing to view the network traffic you will notice how many messages there are
and how frequent they are sent. Consider if there is a better way of doing this that will cut
down on the network traffic. Modify the send and receive programs accordingly to see if you
can cut down on the network traffic generated.

 7 Worked Example 1: Brake!!!!

 32

This example shows a simple signal-response system in action, the most basic CAN system
possible.

8.1 Setup

• Switch 0 on Node 2 to mimic the brake pedal action.

• LED 0 on Node 3 to mimic the rear brake light action.
LED 0 on Node 1 to mimic the dashboard brake light signal action.

Open up file CAN_Example_01_Send.fcfx in Flowcode and download it to Node 2 (The Switch-
es node).
Open up file CAN_Example_01_Recieve.fcfx in Flowcode and download it to Node 3 (The LED
node).

8.2 Viewing the messages

If you open up CANKing and view the network traffic you will see a message being sent when-
ever the brake pedal is pressed.

8.3 Part 1 – The brake light
When the brake pedal is pressed (Switch 0 on Node 2) the Brake light (LED 0 on Node 3) lights
up.
The signal generated by Node 2 (the switches) is picked up by Node 3 (the LED’s) and, as all
messages are accepted, the message is acted upon lighting the LED.

8.4 Part 2 – The dashboard display

Next download the CAN_Example_01_Recieve.fcfx program to Node 1.
Now when the brake pedal is pressed the LED’s on both Node 1 and Node 3 will light up.
We have not altered the signal sent in any way, but both the receiving nodes receive and act
upon the signal.

Next download the CAN_Example_01_Recieve_A.fcfx program to Node 3.
This time the same LED lights on Node 1, but a different LED (1) lights on Node 3.
The same signal is sent but acted upon differently by the two receiving nodes.

8.5 Conclusions

This example demonstrates that sending and receiving are not only separate acts, but also that
they are totally independent. Depending on the programs sent to different receiving nodes each
node could respond to the signal in a completely different way.

 PIC BL0011 Arduino BL0055

Port A Port B Port C A0-5 D0-7 D8-13

Node 1 BL0167 BL0140 BL0167 BL0140

Node 2 BL0145 BL0140 BL0145 BL0140

Node 3 BL0167 BL0140 BL0167 BL0140

 8 Demonstration 1: Brake!!!

8.6 Further work

• Consider what would happen if in Part 2 you loaded a program that would send a signal if
switch A1 was pressed. How would the other Nodes be affected?

• If you use CANKing to view the network traffic you will notice how many messages there are
and how frequent they are sent. You may want to consider if there is a better way of doing this
that will cut down on the network traffic?

 33

This exercise will allow you to understand how to find faults in CAN bus systems

9.1 Setup

Connect and power up the CAN solution. We will be using Node 1, the display node, to display
the data. We will be using Node 4, the Sensor Node, to send the data.

Open the file CAN_EXAMPLE_04_RECEIVE.FCFX in Flowcode and download it to Node 1 (The
Display node).
Open the file CAN_EXAMPLE_04_SEND.FCFX in Flowcode and download it to Node 4 (The
Sensor node).

The CAN faults board is positioned between Nodes 3 and 4 in the system. Any fault in the CAN
bus will result in the data not being transmitted.

Here is a graphic of the faults board. The screw terminals on the top are market IN and OUT. Of
course CAN bus signals flow in both directions but we will use IN and OUT for convenience. Note
that the CAN analyser socket is connected to the CAN IN lines. Make sure that all the switches
are in the NORMAL position. In this position no faults are inserted. You will be inserting faults into
the system between Nodes 3 and 4. In the example programs signals are being sent from Node 4
to node 1: this means that the Analyser is on the non-fault side of the CAN bus.

TP1 and TP2 are connected to the CAN-H and CAN-L signals ‘before’ a fault. TP3 and TP4 are
connected to the CAN-H and CAN-L signals ‘after’ a fault.

9 Fault finding in CAN systems

 34

9.2 Viewing the messages

If you open up CANKing and view the network traffic you will see messages being sent at regular
intervals. If you vary the potentiometer on the Sensor board on Node 4 you will see on the
analyzer readout that the data portion of the message relates to the potentiometer setting. In this
case the potentiometer value is mimicking the fuel sensor on a petrol tank. Varying the
potentiometer will result in a change in the display on the LCD on Node 1 by indicating how much
fuel is in the tank.

• Connect a storage oscilloscope between GND and TP1. You should be able to see the CAN
bus signal.

• Connect a storage oscilloscope between GND and TP2. How does it differ from the first
measurement?
Make a drawing (approximate) of each signal or print it out. Record timing and voltage levels so
that you can refer to these drawings later.

Remove the CAN-L and CAN-H wires from the ‘IN’ screw terminal connector. The LCD display
should go blank. This is the fault condition: when there is no display then there is a fault on the
system. Note that under partial open circuit fault conditions your CAN bus analyzer may still show
data on the bus even though the LCD is blank: the reason for this is that the CAN interface on
Node 1 has a different interface circuit to the CAN analyzer which is more sensitive.

9.3 Part 1 – F1

• Move switch F1 into the right hand position.

• What happens to the LCD?

• Is this a fault?

• Use the oscilloscope to view the signals on TP 1 to TP4. What can you see?

• Remove power from all nodes. Use a multimeter to measure the resistance between nodes
and complete the table below.
What kind of fault does F1 represent?

 TP1 TP2 TP3 TP4

Resistance to ground

Resistance to +V

TP1 -

TP2 -

TP3 -

TP4 -

Fault finding in CAN systems

 35

9.4 Part 2 – F2, F3, F5, F6, F7

Move switch F1 back into the NORMAL position. Repeat the exercise in the section
above individually for fault switches F2, F3, F5, F6, F7. When you do this make
sure all switches are in the NORMAL position except one switch. You should now
have a clear understanding of what fault each switch inserts into the system.

9.5 Partial open circuits

F4 and F8 are used to insert partial open circuits into each CAN bus line. Place all
switches in the NORMAL position. Place switch F4 in the right hand fault position.
Using the potentiometer vary the fault resistance until the system just stops working
– the point at which the LCD on Node 1goes blank. Remove power. Complete the
table above again and note the fault resistance. Complete this exercise again for
switch F8. Does the resistance at which the CAN-H and CAN-L lines introduce a
fault vary?

Fault finding in CAN systems

 36

Here we will discuss and explain the core features of CAN networking, and provide examples and
suggested projects for you to train with. By the end of this section you will be able to set up and
run a multiple node CAN network that can respond to a variety of messages. There is a lot to
learn here so you may need to come back to various parts of this section some times to review
what you have learned.

Here we will look at Message ID’s and how we can be selective about which messages to re-
spond to. We will also look at sending and receiving data. We will examine the general settings,
and how they affect the network.

To be able to work with Message ID’s we need to understand the CAN component Properties
Panels.
The various tabs on the CAN component properties detail general settings, and the default TX
Transmit and RX Receive buffer settings.

11.1 General Settings

The general settings properties tab contains the main CAN network settings properties.

Bus rate Bus rate is the connection speed for the node. The node will expect all messages to ar-
rive at that rate. Messages arriving at too fast a rate or too slow a rate may be sampled incorrect-
ly leading to erroneous or jumbled messages. All nodes on a network need to be set to the same
Bus rate otherwise communication problems will arise.

Sample Point Sample point is the point of the expected signal pulse at which the signal is meas-
ured to determine if it is a 1 or a 0. This is normally set to 50%-80% of the signal pulse period.

Synchronization Jump Width - SJW Synchronization Jump Width is used to help synchronize
CAN nodes. As CAN does not use a clock it needs to synchronize itself with the transmitter
nodes. SJW is a variable that helps set the maximum amount of timing leeway allowed for syn-
chronization. This is used to help data transfer between data nodes on unusually long CAN ca-
bles and can be left as is for most node networks.
The default settings, of the CAN component are as follows: Channel = External, Bus Rate = 500,
Sample Point = 60%, Sync Jump Width = 1, ID Type = Standard Only. In order to use the CAN
analyzer shipped with some of our CAN systems, ensure that the settings are the same for both
the CAN component and the CAN analyzer, as it is required for them to function correctly.

Note: Change the ‘Bus Rate’ from ‘500’ to ‘125’ to match the settings required for the exercises.

11 The CAN component

10 Intermediate CAN Networking

 37

Our implementation of the CAN physical layer has three transmit buffers – TX
Buffer 0, TX Buffer 1 and TX Buffer 2. Each buffer contains a Message ID and a
batch of Data. All three buffers work the same way. The buffers are used to store
the CAN message until it is ready to send. The buffer can be modified and changed
and is not fixed. The default values on the Properties Panels are used unless
programmatic changes are made in which case the changed values are used.

Use the properties panel to set the Message ID’s and data for each of the three
buffers, this gives you the ability to send three predefined messages. Later on we
will look at ways to modify these properties on the fly, but for now we will use the
properties panel to set up the messages.

11.2.1 Message ID’s

When a message is put onto the network, the nodes need to know whether to react
to the message or not. In the basic example we simply reacted to the presence of a
message regardless. However we can be selective. Each message sent onto the
network has a Message ID number. The nodes can check this Message ID number
to see if it matches with the list of ID’s it should accept. If it matches the node can
react to the message, if not the message can be disregarded.

If you look at the Properties Panel (see Fig. 10.1) and find the TX Buffer 0 section
you will see a Message ID property. This is the Message ID value sent along with
Buffer 0.

Figure 11.1 Setting the Message ID in the Properties Panel

TX Buffer 1 and TX Buffer 2 also have identical boxes for you to put their Message
ID’s in. This means that we can generate messages with three separate Message
ID’s from any particular node by using just the default buffer properties alone.
However, we can have more than one node on a network, each of which could
transmit signals with different Message ID’s – or even the same Message ID’s
depending on the system. From this you can start to grasp the enormous amount of
potential messages, each with their own Message ID that can be sent. Later we will
look at ways to change the buffer Message ID programmatically, giving us even
more flexibility than the three default values.

11.2 Transmit Buffers

 38

There are two receive buffers RX Buffer 0 and RX buffer 1 in our implementation of
the CAN physical layer, which store received data. These can be checked to see if
they have received any messages.

Receive buffers can be one of the most complex parts of our implementation of
CAN to use and understand. The Filter properties are similar to Message ID’s as
the Buffers will react to them. The advanced mode will be dealt with later in the ad-
vanced CAN networking section.

There are 6 Filters in total split between two RX Buffers (0 and 1). RX Buffer has 2
filters available (Filter 0 to 1) and RX Buffer has 4 filters available (Filter 2 to 5).

Figure 11.2 RX Buffer Filters and properties

You can set up the simple mode by clicking on the ‘Simple settings’ check box. You
can then enter Message ID values into the boxes. Messages with these ID’s will be
accepted by the RX Buffer. Once a message has arrived we can check for it with
the CheckRX(Buffer) macro. The buffer parameter is used to indicate which RX
Buffer is checked (0 for RX Buffer 0, and 1 for RX Buffer 1). A non-zero return value
indicates that a message has arrived.

11.3 Receive Buffers

 39

Message ID’s are complex to get to grips with due to the mathematics involved, alt-
hough careful selection of Message ID’s can simplify the problem greatly. There are
two parts to consider – how to read in and differentiate Message ID’s and how to
change pre-set ID’s for outgoing messages.

12.1 Checking Message ID’s

You can check for messages with CheckRx(Buffer), which returns a non-zero value
when a message is received. You can interrogate a message to discover what the
Message ID is. However Message ID’s can be up to a value of 2047 (hex 0x7FF),
whilst Flowcode and the microcontroller only use values up to 255 (0xFF). The
range of possible Message ID values is greater than the largest number the micro-
controller can handle. To get around this the message is broken up into two bytes,
a hi byte and a lo byte. These are accessed via the two macro functions GetRxIDHi
and GetRxIDLo. Both functions take the parameter Buffer to select which RX Buffer
to get the Message ID data from.

The problem is further complicated by the fact that the Message ID is an 11 bit
number with the first 8 Most Significant Bits forming the hi byte, and the 3 Least
Significant Bits forming the first three Most Significant Bits of the lo byte (see Fig.
11.1). This can make the mathematics for manually checking Message ID values
quite complex. The simplest way is to compare the retrieved values with known val-
ues for hi and lo to see if they match.

Figure 12.1 Converting the hi and lo bytes of the Message ID

12.1.1 Converting from 8-bit values to 11-bit

At some stage you may need to know how to get the full 11-bit value from the two 8
-bit High and Low bytes. The mathematics is as follows:

Message ID = (hi x 0x08) + (lo / 0x20)

12 Working with Message ID’s

 40

Because of the added complexity of working with the hi and lo Message ID values we suggest
that for educational use, especially when just beginning to work with CAN, that you use a system
where one of the bytes (probably the lo byte) remains the same, whilst the other byte (the hi byte)
changes. This simplifies the mathematics considerably whilst still allowing you access to 256
different Messages ID’s.

Note: Because we are creating both sending and receiving nodes we can pick
Message ID’s that make life easy for us. However, if you are adding a node to an
existing system you may need to work with Message ID’s that have already been
set up. This may well mean that both hi and lo bytes need checking. You may also
need to test the network to ensure that your Message ID’s do not affect other
nodes inadvertently.

12.2 Manual Message ID’s – a recommendation

Working with Message ID’s

 41

13.1 Part A: Sending

13.1.1 Objective

Set up serious of switches to activate a brake light, an indicator light, and a rear light.

13.1.2 Instructions

The three lights have been assigned the following ID numbers:
Brake = ID 8
Rear light = ID 16
Indicators = ID 32

The activation switches are as follows:

Brake = Switch 0 - Brake
Rear light = Switch 1 – Rear Light
Indicators = Switch 2 – Left indicator

Node 2 (Switches Node) will be used to send the signals.

13.2 Part B: Receiving

13.2.1 Objective

Set up a basic car rear light cluster display containing a brake light, an indicator light, and a rear
light.

13.2.2 Instructions

The three lights have been assigned the following ID numbers:
Brake = ID 8
Rear light = ID 16
Indicators = ID 32

The Display lights are as follows:

Brake = LED 0 - Brake
Rear light = LED 1 – Rear Light
Indicators = LED 2 – Left indicator

Node 3 (LED’s Node) will be used to display the signals.

The indicators need to be made to flash if possible at about 1 second on, 1 second off.

13.3 Further work

We have set the program up as a LEFT rear light cluster. Consider what changes we would
need to be able to make in order to create a RIGHT rear light cluster.

Could we set up a front light cluster? If so what messages would be the same? What extra

messages would we need?

Ideally we would want both a left and a right rear cluster. What changes would we need to the
CAN system in order to enable us to set this up?

13 Exercise 2: Rear Light cluster

 42

14.1 Part A: Sending

We have three signals to send, and just by coincidence we have three buffers with which to send signals.
If we set a light up for each buffer then we can send all three signals using the three buffers.

The basic program is the same as the brake light one in example 1, but with three check switch/send sig-
nal sections. Set each section up to use a different buffer, and set each buffer up with a different Message
ID. These are what we will be dealing with next.

Open up the Properties Panel and set the Message ID for the three TX Buffers as follows:

14.2 Part B: Receiving

In Part A we set up a node to send three possible messages with the Message ID’s 8, 16 and 32. Now we
need to set up a node that can accept these three Message ID’s.
If we open up the properties and look at RX Buffer 0 we will see that we can have up to 2 Message ID’s to
accept for that buffer. If we check Rx Buffer we will see that RX Buffer 1 has 4 message ID’s we can set
up. We have three possible incoming messages so we use RX Buffer 1 to receive them all.

Set the first three ID boxes on RX Buffer 1 to Message ID 8, Message ID 16 and Message ID 32. De-
select the other boxes so that they don’t accept any other Message ID’s.
Now we will get a response on RX Buffer 1 whenever one of those 3 Message ID’s is sent.

We can use a simple CheckRx macro to see if a message has arrived. However there are three messages
that could trigger RX Buffer 1, so we need to distinguish between them.
At this point you would probably need to get out the pen and paper and work out what the hi and lo byte
values are for the two Message ID’s. Fortunately we have done this for you.

Now you can see why we picked such a strange Message ID sequence. The lo byte is the same for each,
so we can simply test the hi byte to find out which message it is.
A more sophisticated approach would be to test the lo byte first to make sure it is 0, as expected, and then
test the hi byte to see which message it is.

If we had picked values such as 101, 149, 150 the values would have been:

And we would need to check both hi and lo bytes for the values involved.

Buffer Message ID Function

TX Buffer 0 8 Brake

TX Buffer 1 16 Rear Lights

TX Buffer 2 32 Indicators

Message ID Hi byte Lo byte

8 1 0

16 2 0

32 4 0

Message ID Hi byte Lo byte

101 12 160

149 18 160

150 18 192

14 Notes for Exercise 2

 43

In our send program we set up the Message ID’s 8, 16 and 32. Now we can check
to see which message was sent and deal with it accordingly.

So if we receive Message ID 16 for instance we turn on output D1.

The code fragment in Fig. 13.1 shows how we can check for a message and then
retrieve the message ID identifier values (in this case just the Message ID Hi byte is
needed) and check that to see which message has been sent.

Figure 14.1 Code fragment showing how to retrieve the message ID

14.2.1 Which buffer to use?

We need to accept three Message ID values, but there are only 2 Message ID slots
on RX Buffer 0. However RX Buffer 1 has 4 slots for Message ID values. In the ex-
ample above we have set up all three messages on RX Buffer 1 and just used that
buffer. However we could have used a combination of both buffers if we wished.

Message ID Hi byte value Message Output

8 1 Brakes D0

16 2 Lights D1

32 4 Indicators D2

Notes for Exercise 2

 44

14.3 Indicators

Having flashing indicators is an optional extra as it does not concern CAN networking, but is a
useful exercise and improves the visual appeal of the finished display.

14.4 Conclusion

Now we have a working system. It can send different signal and can differentiate between those
signals. This enables us to build quite complex systems that are capable of sending many
different messages from many different nodes, and has the capability to be selective and to react
to some all or even none of the potential messages on the system.

14.5 MAJOR ERROR!!! – Is the Brake on?

There is a problem with the system. We have a brake signal that we are using to turn the brake
light on or off. But what would happen if the system missed a signal, or started with the brake on
when it should be off? The signal would become reversed. The brake light would be lit when the
brake is off not on. Not a good situation.

We are stuck in this situation because we can only send three signals and all three are needed
for different jobs. Also the signal sent for the brake does not tell us if the brake is on or off, simply
that a Brake signal was sent. What we would like to do is either send separate Brake On and
Brake Off signals, which would require more Message ID’s than we have at the moment, or the
ability to send data with the message to say whether the brake is on or off. And these are exactly
the problems we will be dealing with next.

Further work

Further work includes some simple practical questions, and one theoretical one.

To make a right hand light cluster would just involve a different Message ID and activation switch
to replace the left hand indicator. In a similar way the front light cluster would need to ignore the
brake light message as there is no brake light there. But it would need a Dip signal sent instead.

Setting up a left and right system (or a full front and rear system if this train of thought is taken to
its conclusion) is theoretical, as it requires macros not yet introduced. To set up a left and right
system though would require either a fourth Message ID, or some kind of data to say which
indicator to use.

Notes for Exercise 2

 45

This example shows a CAN message system in action.

15.1 Setup

Connect and power up the CAN solution. We will be using switches 0-2 on Node 2 to mimic
activation action signals. We will be using LED’s 0-2 on Node 3 to mimic the rear light cluster.

Open up file CAN_EXAMPLE_02_SEND.FCFX in Flowcode and download it to Node 2 (The
Switches node).
Open up file CAN_EXAMPLE_02_RECEIVE.FCFX in Flowcode and download it to Node 3 (The
LED node).

15.2 Viewing the messages

If you open up CANKing and view the network traffic you will see a message being sent
whenever one of the switches is pressed.

15.3 The light cluster

When the brake pedal is pressed (Switch 0 on Node 2) the Brake light (LED 0 on Node 3) lights
up.
The signal generated by Node 2 (the switches) is picked up by Node 3 (the LED’s) and, as all
messages are accepted, the message is acted upon lighting the LED.
In a similar way the Lights switch (Switch 1) activates the rear light (LED 1), and the Left indicator
switch (2) activates the left indicator (LED 2).

15.4 The messages

The three lights have been assigned the following ID numbers:

Brake = ID 8
Rear light = ID 16
Indicators = ID 32

Watch in CANKing as messages are sent, and how the Message ID tells you which light will be
activated.

15.5 Other network traffic

Open up file CAN_EXAMPLE_02_RANDOM_SEND.FCFX in Flowcode and download it to Node
1 (The Display node).
The switches on the Display node have been set to send various messages. Press on them to
see what happens. If anything significant happens check with CANKing to see if you can work out
why.

 PIC BL0011 Arduino BL0055

Port A Port B Port C A0-5 D0-7 D8-13

Node 1 BL0145 BL0140 BL0145 BL0140

Node 2 BL0145 BL0140 BL0145 BL0140

Node 3 BL0167 BL0140 BL0167 BL0140

15 Demonstration 2: Rear light cluster

 46

This demonstration shows Message ID’s in action. Events can be linked to specific
Message ID’s so that they can be on a network with lots of traffic and will only
respond to the correct signal, not random traffic as in demonstration 1.

The first demonstration files CAN_EXAMPLE_02_SEND.FCFX and
CAN_EXAMPLE_02_RECEIVE.FCFX are based on those created for Exercise 2.

The final file CAN_EXAMPLE_02_RANDOM_SEND.FCFX that is sent to the
Display node sends out various signals. Of note is the signal for switch D4 that has
the message ID 32. This is the same Message ID as the Indicator signal. As it has
the same Message ID it will trigger the Indicators on the receiving node.
This illustrates a potential problem on CAN networks – that of conflicting Message
ID’s. Where more than one Node can generate a message with the same Message
ID thus inadvertently triggering the receiving Node. This can be used at the end of
Exercise 2 to demonstrate the same potential problem.

16 Notes for Demonstration 2

15.6 Conclusions

 47

Up to now we have used the Message ID’s as set in the Properties Panels.
However, you can change the ID using the SetTxID macro. This opens up a whole
new realm of possibilities. By being able to change message ID’s on the fly you can
react to inputs by sending different messages depending on the data received. For
instance the message that operates a flashing warning light could be changed to
one that also produces a warning noise after a certain point.

However there is a problem: Message ID’s are 11-bits in length, but
microcontrollers are only able to handle 8-bit numbers. So the Message ID value
needs to be divided into two separate 8-bit bytes, a hi and a lo byte, as shown in
Fig. 16.1.

Figure 17.1 Converting the hi and lo bytes of the Message ID

17.1.1 The SetTxID macro

The SetTxID macro takes three parameters: buffer, hi and lo. Buffer is the TX Buffer
number, 0-2.
The other two parameters, hi and lo, set the Message ID value.

The problem here is that whilst the Message ID value can be up to 2047 (hex
0x7FF) Flowcode, and the microcontroller can only handle numbers up to 255 (hex
0xFF). So we need to split the Message ID value into two separate bytes. The
Message ID is 11 bits in length, and we need to convert this into two 8 bit bytes.

17.1.2 Converting from 11-bit to 8-bit values

The two bytes are laid out as follows:
The 8 Most Significant Bits (the first 8) of the ID are put into the hi byte.
The 3 Least Significant Bits (the final 3 bits) are put into the lo byte - but in the 3
Most Significant Bit positions (i.e. the first 3)

The mathematics for converting from the full Message ID to the two hi and lo bytes
is:

hi = (Message_ID AND 0x7F8) / 8
lo = (Message_ID AND 0x007) * 0x20

17 Changing Message ID’s

 48

Figure 17.2 Converting the hi and lo bytes of the Message ID

The simplest way is to set the hi and lo values to pre-determined values. When
choosing Message ID values you will need to ensure that you do not use any of the
same Message ID’s used by other transmitting node, otherwise you risk chaos on
the network. You can aid the designer of the receiving nodes as well by selecting
Message ID values that the receiving nodes can identify and differentiate easily.

Changing Message ID’s

 49

Exercise 3 extends Exercise 2 to include left and right indicators. The solution to Exercise 2 can be used
as a starting point for Exercise 3.

18.1 Part A: Sending

18.1.1 Objective

Set up series of switches to activate a brake light, a left and a right indicator light, and a rear light.

18.1.2 Instructions

The three lights have been assigned the following ID numbers:
Brake = ID 8
Rear light = ID 16
Left indicator = ID 32
Right indicator = ID 64

The activation switches are as follows:

Brake = Switch 0 - Brake
Rear light = Switch 1 – Rear Light
Left indicator = Switch 2 – Left indicator
Right indicator = Switch 3 – Right indicator

Node 2 (Switches Node) will be used to send the signals.

18.2 Part B: Receiving

18.2.1 Objective
Set up a left and a right car rear light cluster display containing a brake light, an indicator light, and a rear
light. Note that this will require two separate nodes with separate but similar programs.
Create one node first and use the program as the base for the program for the second node.

18.2.2 Instructions
The three lights have been assigned the following ID numbers:

Brake = ID 8
Rear light = ID 16
Left indicator = ID 32
Right indicator = ID 64

The Display lights are as follows:

Brake = LED 0 – Brake
Rear light = LED 1 – Rear Light
Left indicator = LED 2 – Left indicator
Right indicator = LED 3 – Right indicator

Node 1 (Display Node) will be used to display the Left hand cluster signals.

Brake = LED 0 – Brake
Rear light = LED 1 – Rear Light
Left indicator = LED 2 – Left indicator

Node 3 (LED’s Node) will be used to display the Right hand cluster signals.

Brake = LED 0 – Brake
Rear light = LED 1 – Rear Light
Right indicator = LED 3 – Right indicator

The indicators need to be made to flash if possible at about 1 second on, 1 second off.

18 Exercise 3: Rear light system

 50

We now have a working rear light set. What changes are needed to create a front light set?

Can a full front and rear light system be created? (Node 1 can be used for the front light

cluster).

We can use the same signals to set up a dashboard display. The only difference to a cluster
is that the dashboard has signal lights for both indicators.

18.3 Further work

Exercise 3: Rear light system

 51

19.1 The programs

Apart from having four messages the problem is the same as in Exercise 2. We
need a fourth message so we need to modify the Message ID for at least one of
the TX Buffers. However we can leave the other two as defaults. The best solution
would be to keep the brake and Light messages as is, and modify the Indicator
Message ID according to which one it is – left or right.

We can use the SetTxID macro to set the Message ID’s on the fly. For this macro
though we need the hi and lo bytes to be sent as parameters. The hi and lo bytes
needed are listed below for convenience. Note how we have maintained the same
system as before with only the hi byte changing.

Once again though it is worth reiterating that we may not always have the luxury of
such a neat set of Message ID’s when working with other networks.

The two receive nodes are simple to make. The left hand indicator is exactly the
same as the one in Exercise 2, and the right hand one only needs changing to
accept the right hand indictor Message ID.

19.2 Conclusion

This may seem a small exercise, but it is of fundamental importance. Now we are
free of the default three TX buffer/Message ID limitation. We can alter Message
ID’s as we see fit and so can create up to 65536 potential Message ID’s. Our only
worries now are that we ensure that our Message ID’s don’t clash with other
Message ID’s on the network, and that our receiving Nodes are set to receive
them. But that is just down to good planning coding and documentation.

Message ID Hi byte Lo byte

8 1 0

16 2 0

32 4 0

64 8 0

19 Notes for Exercise 3

 52

This example shows a CAN message system in action.

20.1 Setup

Connect and power up the CAN solution.
We will be using switches 0-2 on Node 2 to mimic activation action signals.
We will be using LED’s 0-2 on Node 3 to mimic the rear light cluster.

Open up file CAN_EXAMPLE_03_SEND.FCFX in Flowcode and download it to Node 2 (The
Switches node).
Open up file CAN_EXAMPLE_03 _LEFT_INDICATOR.FCFX in Flowcode and download it to
Node 1 (The Display node).
Open up file CAN_EXAMPLE_03 _RIGHT_INDICATOR.FCFX in Flowcode and download it to
Node 3 (The LED node).

20.2 Viewing the messages

If you open up CANKing and view the network traffic you will see a message being sent whenev-
er one of the switches is pressed.

20.3 The light cluster

When the brake pedal is pressed (Switch 0 on Node 2) the Brake lights (LED 0 on both Node 1
and Node 3) light up. The signal generated by Node 2 (the switches) is picked up by both Node 1
and Node 3 (the LED’s) and, as both nodes are set to accept all messages, the message is acted
upon lighting the LEDs.

In a similar way pressing the Lights switch (Switch 1) activates the rear lights (LED 1 on Node 1
and Node 3). Note that whilst development boards often use push to make switches, real life ap-
plications would be likely to use toggle switches for items such as light switches.

The Left indicator switch (2) activates the left indicator (LED 2 on Node 1) and the Right indicator
switch (3) activates the right indicator (LED 3 on Node 3). However, unlike the Brake and Light
signals these two indicator signals are only accepted by specific nodes. So the left indicator sig-
nal is only accepted and acted upon by Node 1, the Left light cluster. Similarly the right hand
cluster accepts the right hand indicator signal whereas the left hand cluster does not.

20.4 The messages

The four lights have been assigned the following ID numbers:

Brake = ID 8
Rear light = ID 16
Left indicators = ID 32
Right indicators = ID 64

 PIC BL0011 Arduino BL0055

Port A Port B Port C A0-5 D0-7 D8-13

Node 1 BL0167 BL0140 BL0167 BL0140

Node 2 BL0145 BL0140 BL0145 BL0140

Node 3 BL0167 BL0140 BL0167 BL0140

20 Demonstration 3: Rear light
cluster

 53

Watch in CANKing as messages are sent, and how the Message ID tells you which
light will be activated.

20.5 Conclusions

This demonstration shows Message ID’s in action. Events can be linked to specific
Message ID’s so that they can be on a network with lots of traffic and will only re-
spond to the correct signal, not random traffic as in the first demonstration.

This example is the same as Demonstration 2, but with both rear light clusters al-
lowing the students to see the different indicators light up.

You can use this demonstration as an alternative to demonstration 2.

Sending the CAN_EXAMPLE_02_RANDOM_SEND.FCFX file from Demonstration
2 to Node 1 will allow you to show how random messages with the same Message
ID’s can cause problems for receiving nodes.

21 Notes for Demonstration 3

Demonstration 3: Rear light
cluster

 54

22.1 Default Data properties

On the Properties Panels there is a set of properties for adding data to a message.
The properties are a Data Length property and up to eight bytes of data. The data length property
sets how many bytes of data the message contains, and can be set from 0 to 8. When set to 0,
no data will be sent. When set to 1-8 that amount of data bytes will be sent. Depending on the
value set some or all of the data boxes may be grayed out. These grayed out boxes will not be
used in the message. You can edit the value in the data boxes to set default data values that will
be passed with that buffer. All three transmit buffers work the same way.

22.2 Changing Message Data

There is a macro that you can use to modify the data in your program.
The SetTxData macro takes the following parameters: Buffer, Count, d0, d1, d2, d3, d4, d5, d6,
d7.
Buffer refers to the TX Buffer to be modified (0, 1 or 2).
Count sets how many bytes of data to use (0 – 8, with 0 being no data).
d0 – d7 are the individual bytes of data.

Note that values for all 8 bytes must be added, as they are required by the macro. Simply add a
value for any unused bytes (traditionally ‘0’ is used in programming for values that need to be
supplied but are not acted upon). This needs to be done even if Count is set to 0, meaning no ac-
tual data is sent.

Example 1

SetTxData(0, 4, 255, 128, 32, 56, 0, 0, 0, 0) will setup TX Buffer 0 to send the 4 bytes of data
255, 128, 32, 56.

Example 2

SetTxData(1, 0, 0, 0, 0, 0, 0, 0, 0, 0) will setup TX Buffer 1 to send 0 bytes of data.

22.3 Keeping track of data

When a program uses SetTxData to modify the data it is up to the programmer to keep track of
what the data now is. It is also the job of the programmer to ensure that the correct new data is
passed to the buffer. The Properties Panel defaults are what is in the buffer when the program
starts. If you modify the data it will stay modified until you modify it again.

22.4 Sending data

Whenever a buffer is sent, the Data associated with that buffer is sent automatically. No further
action needs to be taken. If SetTxData has not been used to modify the default data then that de-
fault data specified on the Properties Panel for that buffer will be sent. If SetTxData has been
used to modify the data then the current data will be sent. Note that the Properties Panel is not
altered by SetTxData.

When a message is sent the data length is passed with it, along with the corresponding bytes of
data. If data length is 5 then five bytes of data will be sent. If it is 3 then only three bytes of data
will be sent. This is important as trying to read five bytes of data if only three were sent will cause
problems.

22 Message Data

 55

22.5 Receiving Message Data

Receiving message data is done in two parts. Firstly you need to find out how much data has
been sent, and secondly you need to extract the individual bytes of data.

The macro GetRxDataCount is used, along with the parameter buffer, to get the data length for
the message in the relevant RX Buffer. Once you have the data length you can see if the mes-
sage includes any data, and if so how many bytes.
You can then use this information to safely extract the data using the GetRxData macro.
GetRxData takes the parameters Buffer (the RX Buffer to use) and Index (the item to retrieve).

The index is numbered 0-7, in the same way the TX Buffer data items are named D0 to D7 on the
Properties Panels. Index 0 is the first item, index 1 the second etc. Starting at 0 rather than 1 is a
common feature in programming, and one to be aware of if you are getting erroneous data re-
turns.

22.6 Data order considerations

Care needs to be taken when working with data as changing the order in which the data is stored
will require corresponding changes to how the data is retrieved. Given the fact the nodes are in-
dependent of each other it is best to decide on a strategy for the data at an early stage of system
design. Should more data be required it is often easier to add the new data on as extra items ra-
ther than change the order involved, as this will have less impact on any other nodes.

It may also be easier to use a pre-existing data structure and simply read in and ignore items that
are not required rather than to reprogram several nodes just to rearrange the data order.

22.6.1 Example: Setting up the data node

We are given the task to send two bytes of information on TX Buffer 0, Message ID 105, when
switch A0 is pressed. The two bytes of data have default values but the values can be updated
programmatically.

To set up the default values we first open up the Properties Panel and go to the TX Buffer 0 tab
and select a data length of 2. Note that boxes D0 and D1 are active, but that the others are
grayed out. We would then enter the default data values which would be automatically send
when the buffer is sent e.g. 145 in D0, and 12 in D1. Once we have set up the default values they
will be sent whenever the buffer is sent unless they are changed programmatically.

We can change the value in the program by using the SetTxData macro e.g. SetTxData (0, 2,
MyVar0, MyVar1, 0, 0, 0, 0, 0, 0) would change the two bytes of information to the values of
MyVar0 and MyVar1.

22.6.2 Example: Setting up the receive node

If we wished to receive data from a message, such as two items of data as sent by the example
above, we can GetRxData to retrieve the data items.

Set up a basic receive node that polls RX Buffer 0 for the Message ID 105.
Once a message is received we can query it.

Remember that the GetRxData index parameter is 0-7 not 1-8 matching the D0-D7 data items.
Add two GetRxData macros to the program. Set the first one to retrieve RX Buffer 0 data item in-
dex 0, GetRxData(0,0), and put the value into DATA_0 (or some other suitably named variable).
Set the second one to retrieve data item index 1 and out this into DATA_1, GetRxData(0,1).
We than have the data in and can then check it, display it or modify it as we wish.

Message Data

 56

22.6.3 Example: Variable amounts of data

We knew that there would only be two items of data in the program above as we
created both nodes, but if we were not sure we could check how much data had ar-
rived with the GetDataCount macro.

Once a message has arrived we would use GetRxDataCount to check how many
items of data have arrived. We can then use this information to go through and
read in the items of data.
Once we have the data read in using GetRxData we can then work with the data as
needed for the program task.

Message Data

 57

Set up a basic fuel gauge with a warning light than comes on when 10% or less of the petrol is
remaining.

23.1 Part A: Sending

23.1.1 Objective

Set up a fuel level sensor that passes the fuel level as a 0-255 value.
In addition set up a “Fuel low” warning sensor that activates at a preset fuel level.

23.1.2 Instructions

Set up a basic CAN send program with the following default properties:
TX Buffer 0 – Message ID = 160, Data Length = 1, D0 = 0.
TX Buffer 1 – Message ID = 176, Data Length = 0.

TX Buffer 0 will carry the Fuel value in D0, and TX Buffer 1 will be used for the warning signal.

Node 4 (Sensor Node) will be used to send the signals.
Note: The variable potentiometer can be used to represent the fuel level.

23.2 Part B: Receiving

23.2.1 Objective

Set up display panel that shows the fuel level. Also set up a warning indicator that flashes when
the fuel level becomes low.

23.2.2 Instructions

The LCD display can be used to display the fuel amount. This can be either raw data 0-255 or in
some form of conversion e.g. percentage or a system when the maximum 255 = X number of
gallons.

LED 0 will be used for the Fuel low warning light.

Node 1 (Display Node) will be used to display the fuel level and the warning light.

23.3 Further work

The fuel warning light comes on when fuel gets low. However, drivers are notorious for missing or
ignoring warning lights. One thing that does grab our attention though is a flashing light.
Modify the program to produce a flashing light once the fuel gets to say half the fuel low level.

23 Example 4: Fuel gauge and warning light

 58

For the program we need to add an Analogue sensor (the thermometer
Component) and to monitor its reading. The analogue sensor reading consists of
two bytes of data, a High byte and a Low byte. However for this example we will
just use the High byte to simplify matters. Add the SampleADC macro, and a
ReadHigh macro to read the fuel level into a suitable variable such as
FUEL_LEVEL.
Add a SetTxData macro and put in the parameters Buffer 0 (for TX Buffer 0), Count
= 1 (1 data register) and D0 = FUEL_LEVEL (the data to be sent). You need to add
data for the other data registers even though they are not used, so you will need to
add a zero for each of them.

Follow this with a decision icon to see if the fuel is too low. Here we have opted to
check FUEL_LEVEL against another variable called MIN_FUEL, which we will
need to initialize at the start of the program.

If the fuel is too low we can send the TX Buffer 1 signal. By using two buffers we
can send fuel data updates constantly, but only send the warning signal when
needed.

24.1.1 Receiving the data

Firstly set up a program that monitors the CAN network for a signal with the
Message ID 100.
Once this is found we need to extract the data, in this case the FUEL_LEVEL data
that was sent. We retrieve the data with the GetRxData macro. We need to supply
the parameters Buffer (0 for RX Buffer 0), and the index of the data register we
want, in this case the item we want is Index = 0 which corresponds to item D0 on
the TX Buffer (see Fig. 23.1).

 Set the Return value to a convenient variable such as FUEL_LEVEL. Now that you
have the data you can process it and output it to the LCD display. Alternatively you
could use various output methods such as a light bar graph that falls away as the
fuel is used up.

There is another useful macro to use when retrieving data: GetRxDataCount, which
returns the data length for the specified buffer. This allows you to both check that
there is some data there (0 = no data sent), or to find out how much data is there if
a variable amount is possible.

24.1.2 Receiving the warning signal

The warning signal is simple. If a message with the Message ID 101 occurs then
we need to light the warning LED. We could just deal with it straight after we have
read and processed the fuel level data. Or we could deal with it elsewhere. Maybe
there is another specific node that handles the warning signals. You don’t need to
handle all the messages sent from one node at the same receiving node. The great
benefit of CAN is that you don’t have to do everything in one place. We could set
up a third node to handle warning signals.

24 Notes for Exercise 4

 59

Figure 24.1 Setting the macro properties

24 Notes for Exercise 4

 60

This example shows a CAN message system with data in action.

21 Setup

We will be using Node 1, the display node, to display the data. We will be using Node 4, the
Sensor Node, fitted with the rotary potentiometer in socket 1 (Pins 0,1) to send the data.

Open the file CAN_EXAMPLE_04_RECEIVE.FCFX in Flowcode and download it to Node 1
(The Display node).
Open the file CAN_EXAMPLE_04_SEND.FCFX in Flowcode and download it to Node 4 (The
Sensor node).

25.2 Viewing the messages
If you open up CANKing and view the network traffic you will see the message being sent peri-
odically for the fuel level, and also for the fuel warning light should the fuel get low.

25.3 The fuel level
When the program starts the fuel level will be displayed on the LCD.
Moving the variable potentiometer on the sensors Node will change the fuel level displayed.

25.4 The warning light
When the fuel level becomes too low a warning light is activated.

25.5 Viewing the data
If you check the network traffic sent in CANKing you will find a stream of messages being sent
with Message ID 100. This is the data being sent. Note how the message has a single item of
data. Does the data relate directly to the figure displayed? Or is it altered in some way – e.g.
raw data to gallons?
Where does the warning light message come from?

25.6 Conclusions
This demonstration shows data being passed. Although in this example it is just one item, it
demonstrates the potentials of CAN. Not only can you send specific messages that will be
picked up by specific receiving nodes, but you can actually pass data to them as well - fuel,
speed, height, pressure, On/Off states, anything. If it can be converted into data it can be sent.

 PIC BL0011 Arduino BL0055

Port A Port B Port C A0-5 D0-7 D8-13

Node 1 BL0169 BL0140 BL0169 BL0140

Node 4 BL0129 BL0140 BL0129 BL0140

25 Demonstration 4: Fuel gauge
and warning light

 61

This section discusses advanced CAN concepts such as setting Message ID’s Masks and Filters
and the CNF settings. The message structure is examined, and other issues such as network
wiring are also looked at.

26.1 Exercises

No exercises or demonstrations are provided for this section. Existing exercises can be adapted
to use masks and filtering or exercises can be generated to demonstrate the mask and filter
mathematics examples given below.

26.2 Masks and filters

26.2.1 Masks and filters - the general concept

An important but complex part of our implementation of CAN is Masks and Filters.
Masks are used to modify the Message ID values.
Message ID’s are checked against the Filters to see if they should be accepted or not.

26.2.2 Masks

Masks modify the Message ID values received by the buffer. They modify the value by removing
the mask bits from the incoming Message ID. This can be used to make a number of different
Message ID’s appear to be the same value. For example a mask could remove the tens digit
from a message, so that messages ID 120, 123, 140 and 165 would appear as 100, 103, 100,
105 respectively. For details on the masking process see the examples given below.

If the Filters were set up to accept Message ID 100 then Message ID’s 120 and 140, which are
both converted to 100 by the mask would be accepted. Such a system could be used to modify a
batch of Message ID’s that all share a related function – e.g. several warning signals could go to
their respective warning lights nodes using their separate Message ID’s, and because they all
mask to the same value, get picked up and acted upon by a central Master Warning light node.

26.2.3 Filters

Filters are the doormen of the CAN system. They check the incoming Message ID’s against the
Filters - a list of Message ID’s that they can accept. If your name is on the list you will be allowed
in. If not… sorry, try somewhere else mate.

Each filter has a check box next to it on the Properties Panel that can be used to enable or
disable that particular filter.

There are three general filter settings and either 2 or 4 specific filters depending on the RX
Buffer.

• Accept all Messages – all Message ID’s are accepted. The node will respond to any Message
arriving on this buffer.

• Reject All Messages – effectively an ‘Off’ switch for the buffer. The node will not respond to
any message on this buffer. May seem odd, but can be used to turn off an RX Buffer that is not
being used. Why have RX Buffer 1 active if you are only going to use RX Buffer 0?

• Use Masks and Filters – Uses the Masks and filters to modify and check Message ID’s to see
if they should be accepted or not.

26 Advanced CAN Networking

 62

26.2.4 RX Buffer Properties

To enable Masks and Filters, select the ‘Use Mask and Filter’ setting, the other two settings are ‘Accept All’ and
‘Reject All’. The Filter values can be set in Properties Panel, for example see the RX Buffer 0 properties displayed
below.

Figure 26.1 RX Buffer 0 Mask and Filters values, and the Message ID's of each Filter.

The Buffer RX1 properties are similar to the Buffer RX0 properties shown above; however more filters are available
for use.

How to work out which messages will be trapped by a particular mask/filter combination

The best way is to work through some examples:

Note that all values for Message ID’s, masks and filters are numbers between 0x000 and 0x7FF.

26.3.1 Using masks and filters: Example 1

Mask 0 = 0x0FF Filter 0 = 0x100 Filter 1 = 0x050

In binary, this looks like:

For the mask, a ‘1’ signifies ‘check this bit’ and a ‘0’ means ‘ignore this bit’

So, these filters will accept the following messages ("x" = don't care)

i.e.:

Filter 0 accepts 0x000, 0x100, 0x200, 0x300, 0x400, 0x500, 0x600, 0x700
Filter 1 accepts 0x050, 0x150, 0x250, 0x350, 0x450, 0x550, 0x650, 0x750

26.3.2 Using masks and filters: Example 2

Mask 1 = 0x350 Filter 2 = 0x200 Filter 3 = 0x123 Filter 4 = 0x3FF

Rewriting in binary:

Mask
1 =

1 1 1 0 1 0 1 0 0 0 0

Filter
2 =

0 1 0 0 0 0 0 0 0 0 0

Filter
3 =

0 0 1 0 0 1 0 0 0 1 1

Filter
4 =

1 1 1 1 1 1 1 1 1 1 1

Mask 1 = 0 0 0 1 1 1 1 1 1 1 1

Filter 2 = x x x 0 0 0 0 0 0 0 0

Filter 3 = x x x 0 1 0 1 0 0 0 0

Mask 0 = 0 0 0 1 1 1 1 1 1 1 1

Filter 0 = 0 0 1 0 0 0 0 0 0 0 0

Filter 1 = 0 0 0 0 1 0 1 0 0 0 0

 63

Here, the mask will only check 4 bits and ignore the other 6. Here's what the filters will accept:

They will actually trap a lot of messages (64 each!):
Filter 2 = 0x200, 0x201, 0x202, ... 0x220, 0x221, ... 0x280, 0x281, ... 0x2A0, 0x2A1, ... 0x2AF
Filter 3 = 0x100, 0x101, 0x102, ... 0x120, 0x121, ... 0x180, 0x181, ... 0x1A0, 0x1A1, ... 0x1AF
Filter 4 = 0x750, 0x751, 0x752, ... 0x770, 0x771, ... 0x7D0, 0x7D1, ... 0x7F0, 0x7F1, ... 0x7FF

This second example is not very practical. In general, it is more logical to set the mask so that
each filter accepts a consecutive range of messages.

As you can see, the mask determines which bits of the filters are actually looked at. Setting the
mask to 0x000 will effectively mean that the filter will accept any incoming message. Also, the
value of the mask directly relates to how many messages each filter will trap - i.e. 2^(number of
'0' bits in the mask).
A useful way to use the mask would be to ignore the least significant bits. Let’s say that you
wanted the filters to accept 16 messages each - setting the Mask 0 to 0x7F0 would achieve this.
Then, setting the filters to the following…:
Filter 0 = 0x100
Filter 1 = 0x110
…would mean that the following messages are accepted:

Filter 0 = 0x100, 0x101, 0x102, 0x103, 0x104, ... 0x10D, 0x10E, 0x10F
Filter 1 = 0x110, 0x111, 0x112, 0x113, 0x114, ... 0x11D, 0x11E, 0x11F

Of course, for simple CAN applications you may wish to only accept one or two messages.
Setting the mask to 0x7FF in this instance would mean that only the message ID specified by
each filter would be accepted, e.g.

Mask 1 = 0x7FF
Filter 2 = 0x100
Filter 5 = 0x200
This would mean that only messages 0x100 and 0x200 would be accepted into RX Buffer 1.

26.4 CNF settings

The ‘Properties’ section on the ‘Properties Panel’ includes options which determine the CNF
settings.
These properties s modify the CNF values automatically, and should suffice for most situations.
However there may be a situation where you need to manually set these values. Chances are, in
such a case, you will have been given the values to be set. If so you can simply enter the values
directly.
If not you may need to consult the CAN documentation and tables to determine the CNF values
to set. Links to CAN documentation can be found at the end of this document.
Remember - generally, it is best to make sure that these settings are the same for every CAN
node on the bus, although only the bus rate value must be consistent - adjustments for the
sample point and SJW are only ever required when using unusually long cables between the
nodes.

Mask 1 = 1 1 1 0 1 0 1 0 0 0 0

Filter 2 = 0 1 0 0 x 0 x x x x x

Filter 3 = 0 0 1 0 x 1 x x x x x

Filter 4 = 1 1 1 1 x 1 x x x x x

Advanced CAN Networking

 64

26.5 Message details

When a message is sent not only does the Message ID and any associated data get sent, but a
number of markers and wrapper elements are added as well. Fig. 25.2 shows what a message
looks like.

Figure 26.2 Message format

Note that the 1’s and 0’s refer to dominant and recessive voltage levels and not CMOS or TTL
logic levels. Basically CAN is able to use different voltage levels so that it can be adapted to dif-
ferent electrical environments.

26.6 Error detection

CAN has a number of automatic error detection systems that flag errors should they occur. If an
error is detected an error signal is sent destroying network traffic and the nodes on the network
take the appropriate action e.g. discarding the message with the error in it.

Error tracking is complex, and for the full details you will need to check the CAN specifications,
but can be summarized briefly as follows: Nodes track how many transmit errors and receive er-
rors flagged on two counters. Transmit errors increment the transmit error counter by 8 per error,
and receive errors increment the receive error counter by 1. Successful transmit and receives
decrement the values. This means the transmit error counter will rise at a faster rate, appropriate
as faulty transmitters are more likely to be problem. It helps ensure that a faulty transmitter will hit
the switch off point before the nodes receiving its signal and gaining receive errors.

If either value hits 127 then the node becomes error passive. In error passive the node still trans-
mits errors, but they no longer destroy network traffic i.e. the node is declaring itself to be error
prone, and potentially the problem so it stops destroying the network traffic as the messages may
not be the problem. However its error counts continue to increment as normal.

If either of the error counters hits 255 then the node goes Bus Off and stops transmitting. The
node has identified a problem with itself and removed itself from the network.

In summary the Node goes from screaming ‘major error – all stop’, to shouting about errors but
being ignored, to being switched off.

26.6.1 Bit monitoring
As signals are transmitted they are also check by the receiver part of the CAN system for signal
level. If the level detected is not what it should be a Bit Error is flagged.

Advanced CAN Networking

 65

26.6.2 Bit Stuffing.
CAN needs to know if a long signal is a fault rather than part of the message. To help with this
CAN performs Bit Stuffing. If 5 bits of the same value are sent (0 or 1) then a 6

th
 bit is inserted

with the opposite value to let the network know that it is not a fault. This extra bit is automatically
removed by the nodes. Should this bit stuffing not occur then CAN will realize that there has been
a problem somewhere and fire a Stuff Error.

This is required as there is no separate clock signal in CAN. Instead the data rate is synchronized
using the throughput of data. Bit stuffing helps the CAN system synchronize this data clock rate.

26.6.3 ACK bit
When a node sends a message the ACK or Acknowledgment bit is set to 0 (recessive). When a
node receives a message acknowledges the message by returning the signal with the ACK bit
set to 1 (dominant). This does not mean that the message got through to its intended destination;
merely that it was recognized by that particular receiving node as a legitimate message. However
by checking the returned signal has the ACK bit set allows the sending node to signal an
Acknowledgment Error if it is not.

26.6.4 Frame check
Certain parts of the CAN message have set formats and set signals. The message is monitored
for errors in these parts. If an error is detected a Form Error is generated.

26.6.5 Cyclic Redundancy Check (CRC)
Messages contain a 15 bit Checksum that can be checked by receiving nodes. If the values do
not match then a CRC Error signal can be fired.

26.7 Wiring and other practical issues

A common implementation of the CAN physical interface utilizes a twisted wire pair, which helps
minimize errors due to voltage spikes and EMC interference. Networks are terminated by a
resistor across the wires to help counter electrical interference. Nodes are added by connecting
the node to the twisted wire pair. All nodes are interconnected via the network; no nodes are
isolated from any other on the network.

Voltages are either dominant (signified by a 1in written format) or recessive (signified by a 0 in
written format). There are no absolute voltages. The only requirement is for the system to be able
to distinguish between the dominant and recessive signals. This frees us considerably as we can
then work with signals appropriate to the physical interface most suitable for the system, rather
than having to design the system with specific voltages in mind. However the particular IC’s and
other hardware used in your CAN system may have their own tolerances and expected levels
which would need to be taken into consideration.

CAN only specifies the message format, not the physical layer. Whilst this gives us greater
flexibility in wiring up a CAN system, it also means that wiring details can vary considerable
between even similar systems. Other physical interfaces, such as single line fiber optics, are
perfectly acceptable wiring solutions.

Advanced CAN Networking

 66

This document was designed to teach you about the basics of CAN, the theory and concepts
behind it, and practical exercises to increase your knowledge and skill in working with CAN. It
should also provide you with the basis of developing your own CAN teaching program, with
plenty of scope for demonstrations and practical work.

But that’s not the whole story of CAN. Should you wish to take your study of CAN further, or to
move into areas of industry that use CAN, there is much more to know, and much more to study!

27.1 CAN standards

CAN is an evolving specification. It has already advanced from the original Bosch specification
and is currently available in Standard (Version 2.0A) and Extended (Version 2.0B) versions.

The system represented here is a Standard CAN system. Extended CAN has a number of
differences, particularly with message format. The main practical difference is that Extended CAN
uses 29 bit Message ID’s in place of the 11 bit values used by Standard CAN. This allows
Extended CAN to address something like 500 million nodes.
(Given the pain in the neck 11-8 bit conversions are, aren’t you glad we didn’t go for 29 bits!)

The CAN specifications can be obtained from the Bosch web site at:
www.semiconductors.bosch.de

There are also two ISO standards used for CAN transmissions.
ISO1159 is used for low speed networks (up to 125kbit/second).
ISO11898 is used for high speed networks (up to 1Mbit/second)
There are differences between the two standards with regard to wiring and voltage tolerances
etc.
Should you require them the ISO standards can be purchased from the ISO web site at:
www.iso.org

27.2 Higher level protocols

Higher level protocols (HLP) are out of the scope of this course, but may be of interest for those
who will be taking CAN further. Higher level protocols refer to the system languages that pass the
data around and present it in a format that applications using that protocol can understand.

CAN only specifies the message format and leaves the higher-level protocol open. This allows
different areas of industry, or different companies to develop or adopt their higher level protocols
that best suit their needs, such as CANopen from Kvaser (www.kvaser.com).

For us though this means that there is no one higher-level protocol set to study. There are a
number of higher-level CAN protocols on the market. Which one to learn and use may simply
depend on whom you go to work for. CAN system designers may need to be flexible enough to
accommodate design work in one or more of these higher-level protocols.

27 Reference data

http://www.semiconductors.bosch.de/
http://www.iso.org/
http://www.kvaser.com/

 67

27.3 Acronyms and abbreviations

ACK Acknowledge
ADC Analogue-to-digital converter
CAN Controller area network
CANH CAN high
CANL CAN low
CMOS Complementary metal oxide semiconductor
CRC Cyclic redundancy check
DAC Digital-to-analogue converter
ECU Electronic control unit
EMC Electromagnetic compatibility
HLP High level protocol
IC Integrated circuit
ID Identifier (or identification)
ISO International Standards Organization
LCD Liquid crystal display
LED Light emitting diode
RPM Revolutions per minute
RX Receive
SJW Synchronization jump width
TTL Transistor-transistor logic
TX Transmit
USB Universal serial bus

